计算机科学
推论
可扩展性
表观遗传学
规范化(社会学)
基因组学
灵活性(工程)
计算生物学
数据集成
机器学习
数据类型
仿形(计算机编程)
数据科学
人工智能
数据挖掘
基因组
生物
人类学
操作系统
社会学
基因表达
统计
基因
DNA甲基化
程序设计语言
数据库
生物化学
数学
作者
Félix Raimundo,Laetitia Papaxanthos,Céline Vallot,Jean‐Philippe Vert
标识
DOI:10.1101/2021.02.04.429763
摘要
Abstract Single-cell omics technologies produce large quantities of data describing the genomic, transcriptomic or epigenomic profiles of many individual cells in parallel. In order to infer biological knowledge and develop predictive models from these data, machine learning (ML)-based model are increasingly used due to their flexibility, scalability, and impressive success in other fields. In recent years, we have seen a surge of new ML-based method development for low-dimensional representations of single-cell omics data, batch normalization, cell type classification, trajectory inference, gene regulatory network inference or multimodal data integration. To help readers navigate this fast-moving literature, we survey in this review recent advances in ML approaches developed to analyze single-cell omics data, focusing mainly on peer-reviewed publications published in the last two years (2019-2020).
科研通智能强力驱动
Strongly Powered by AbleSci AI