Adaptive Spatio-Temporal Graph Enhanced Vision-Language Representation for Video QA

计算机科学 人工智能 杠杆(统计) 计算机视觉 视频跟踪 自然语言处理 视频处理
作者
Weike Jin,Zhou Zhao,Xiaochun Cao,Jieming Zhu,Xiuqiang He,Yueting Zhuang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5477-5489 被引量:12
标识
DOI:10.1109/tip.2021.3076556
摘要

Vision-language research has become very popular, which focuses on understanding of visual contents, language semantics and relationships between them. Video question answering (Video QA) is one of the typical tasks. Recently, several BERT style pre-training methods have been proposed and shown effectiveness on various vision-language tasks. In this work, we leverage the successful vision-language transformer structure to solve the Video QA problem. However, we do not pre-train it with any video data, because video pre-training requires massive computing resources and is hard to perform with only a few GPUs. Instead, our work aims to leverage image-language pre-training to help with video-language modeling, by sharing a common module design. We further introduce an adaptive spatio-temporal graph to enhance the vision-language representation learning. That is, we adaptively refine the spatio-temporal tubes of salient objects according to their spatio-temporal relations learned through a hierarchical graph convolution process. Finally, we can obtain a number of fine-grained tube-level video object representations, as the visual inputs of the vision-language transformer module. Experiments on three widely used Video QA datasets show that our model achieves the new state-of-the-art results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助嗷嗷嗷采纳,获得10
刚刚
Xu完成签到,获得积分10
刚刚
啦啦啦发布了新的文献求助10
刚刚
木土完成签到 ,获得积分10
1秒前
JamesPei应助小鲤鱼本鱼采纳,获得10
1秒前
Criminology34应助GUOGUO采纳,获得10
1秒前
北张发布了新的文献求助10
1秒前
SciGPT应助无限魔镜采纳,获得10
2秒前
2秒前
阔达海雪完成签到,获得积分10
2秒前
阔达的小海豚完成签到,获得积分10
3秒前
stiger应助sinsinsin采纳,获得10
3秒前
3秒前
神烦狗完成签到 ,获得积分10
4秒前
清见的心完成签到,获得积分10
4秒前
小兔子乖乖完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
王为云发布了新的文献求助10
6秒前
情怀应助悠悠夏日长采纳,获得10
7秒前
平淡过客完成签到,获得积分10
7秒前
Owen应助卤化氢采纳,获得10
7秒前
情怀应助好运藏在善良里采纳,获得10
7秒前
7秒前
冬日发布了新的文献求助10
9秒前
insane发布了新的文献求助10
9秒前
45321完成签到,获得积分10
10秒前
胖头鱼完成签到,获得积分20
10秒前
10秒前
英勇雅琴完成签到 ,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
嗷嗷嗷完成签到,获得积分10
12秒前
13秒前
归尘发布了新的文献求助10
13秒前
乌迪尔应助积极毛巾采纳,获得10
14秒前
华仔应助win采纳,获得10
14秒前
insane完成签到,获得积分10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693462
求助须知:如何正确求助?哪些是违规求助? 5093130
关于积分的说明 15211816
捐赠科研通 4850452
什么是DOI,文献DOI怎么找? 2601739
邀请新用户注册赠送积分活动 1553549
关于科研通互助平台的介绍 1511540