Adaptive Spatio-Temporal Graph Enhanced Vision-Language Representation for Video QA

计算机科学 人工智能 杠杆(统计) 计算机视觉 视频跟踪 自然语言处理 视频处理
作者
Weike Jin,Zhou Zhao,Xiaochun Cao,Jieming Zhu,Xiuqiang He,Yueting Zhuang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5477-5489 被引量:12
标识
DOI:10.1109/tip.2021.3076556
摘要

Vision-language research has become very popular, which focuses on understanding of visual contents, language semantics and relationships between them. Video question answering (Video QA) is one of the typical tasks. Recently, several BERT style pre-training methods have been proposed and shown effectiveness on various vision-language tasks. In this work, we leverage the successful vision-language transformer structure to solve the Video QA problem. However, we do not pre-train it with any video data, because video pre-training requires massive computing resources and is hard to perform with only a few GPUs. Instead, our work aims to leverage image-language pre-training to help with video-language modeling, by sharing a common module design. We further introduce an adaptive spatio-temporal graph to enhance the vision-language representation learning. That is, we adaptively refine the spatio-temporal tubes of salient objects according to their spatio-temporal relations learned through a hierarchical graph convolution process. Finally, we can obtain a number of fine-grained tube-level video object representations, as the visual inputs of the vision-language transformer module. Experiments on three widely used Video QA datasets show that our model achieves the new state-of-the-art results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助忧郁寻冬采纳,获得10
刚刚
lcw发布了新的文献求助10
1秒前
KK发布了新的文献求助10
1秒前
1秒前
果冻发布了新的文献求助10
1秒前
蓝桥易乞发布了新的文献求助10
1秒前
科研通AI6应助可爱的山竹采纳,获得10
1秒前
BowieHuang应助坚定自信采纳,获得10
2秒前
2秒前
专注芾完成签到,获得积分10
2秒前
2秒前
nini爱科研发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
冷傲迎梦发布了新的文献求助10
5秒前
沉静的映秋完成签到,获得积分10
5秒前
5秒前
pangsummer完成签到,获得积分10
5秒前
5秒前
6秒前
领导范儿应助O椰采纳,获得10
6秒前
专注芾发布了新的文献求助10
6秒前
科研通AI2S应助MM采纳,获得10
6秒前
英姑应助赵浩杰采纳,获得10
7秒前
7秒前
小白发布了新的文献求助10
8秒前
8秒前
邵洋发布了新的文献求助10
8秒前
Ava应助cbz采纳,获得10
8秒前
8秒前
8秒前
碧蓝的念瑶完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
pangsummer发布了新的文献求助10
9秒前
王悠悠完成签到 ,获得积分10
10秒前
10秒前
10秒前
春樹暮雲完成签到 ,获得积分10
11秒前
zc发布了新的文献求助10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474