Adaptive Spatio-Temporal Graph Enhanced Vision-Language Representation for Video QA

计算机科学 人工智能 杠杆(统计) 计算机视觉 视频跟踪 自然语言处理 视频处理
作者
Weike Jin,Zhou Zhao,Xiaochun Cao,Jieming Zhu,Xiuqiang He,Yueting Zhuang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5477-5489 被引量:12
标识
DOI:10.1109/tip.2021.3076556
摘要

Vision-language research has become very popular, which focuses on understanding of visual contents, language semantics and relationships between them. Video question answering (Video QA) is one of the typical tasks. Recently, several BERT style pre-training methods have been proposed and shown effectiveness on various vision-language tasks. In this work, we leverage the successful vision-language transformer structure to solve the Video QA problem. However, we do not pre-train it with any video data, because video pre-training requires massive computing resources and is hard to perform with only a few GPUs. Instead, our work aims to leverage image-language pre-training to help with video-language modeling, by sharing a common module design. We further introduce an adaptive spatio-temporal graph to enhance the vision-language representation learning. That is, we adaptively refine the spatio-temporal tubes of salient objects according to their spatio-temporal relations learned through a hierarchical graph convolution process. Finally, we can obtain a number of fine-grained tube-level video object representations, as the visual inputs of the vision-language transformer module. Experiments on three widely used Video QA datasets show that our model achieves the new state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
lu.129完成签到,获得积分10
3秒前
领导范儿应助猪在天上飞采纳,获得10
5秒前
薇薇完成签到,获得积分10
5秒前
超级小蝴蝶完成签到,获得积分10
5秒前
6秒前
667发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
守护完成签到,获得积分10
7秒前
8秒前
8秒前
活火山发布了新的文献求助10
8秒前
zz完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
AIO发布了新的文献求助10
11秒前
汉堡包应助muzian采纳,获得10
12秒前
小北发布了新的文献求助10
12秒前
情怀应助zifeimo采纳,获得10
12秒前
12秒前
王政完成签到,获得积分20
13秒前
glitter发布了新的文献求助10
14秒前
天边发布了新的文献求助10
15秒前
朴实的鸡完成签到,获得积分20
16秒前
UPUP0707完成签到,获得积分10
16秒前
17秒前
Howie发布了新的文献求助10
18秒前
完美的断缘完成签到,获得积分20
18秒前
AIO完成签到,获得积分10
18秒前
18秒前
寒霁发布了新的文献求助10
20秒前
21秒前
天边完成签到,获得积分10
22秒前
22秒前
123123发布了新的文献求助10
23秒前
23秒前
Akim应助停停走走采纳,获得10
23秒前
王政关注了科研通微信公众号
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981