Adaptive Spatio-Temporal Graph Enhanced Vision-Language Representation for Video QA

计算机科学 人工智能 杠杆(统计) 计算机视觉 视频跟踪 自然语言处理 视频处理
作者
Weike Jin,Zhou Zhao,Xiaochun Cao,Jieming Zhu,Xiuqiang He,Yueting Zhuang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 5477-5489 被引量:12
标识
DOI:10.1109/tip.2021.3076556
摘要

Vision-language research has become very popular, which focuses on understanding of visual contents, language semantics and relationships between them. Video question answering (Video QA) is one of the typical tasks. Recently, several BERT style pre-training methods have been proposed and shown effectiveness on various vision-language tasks. In this work, we leverage the successful vision-language transformer structure to solve the Video QA problem. However, we do not pre-train it with any video data, because video pre-training requires massive computing resources and is hard to perform with only a few GPUs. Instead, our work aims to leverage image-language pre-training to help with video-language modeling, by sharing a common module design. We further introduce an adaptive spatio-temporal graph to enhance the vision-language representation learning. That is, we adaptively refine the spatio-temporal tubes of salient objects according to their spatio-temporal relations learned through a hierarchical graph convolution process. Finally, we can obtain a number of fine-grained tube-level video object representations, as the visual inputs of the vision-language transformer module. Experiments on three widely used Video QA datasets show that our model achieves the new state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信鑫鹏完成签到,获得积分10
刚刚
HYH完成签到,获得积分10
刚刚
Harish完成签到,获得积分10
1秒前
研友_851KE8发布了新的文献求助10
1秒前
1秒前
一段乐多发布了新的文献求助10
1秒前
1秒前
华仔完成签到,获得积分10
1秒前
刘百慧完成签到,获得积分10
1秒前
1秒前
Wyan发布了新的文献求助80
3秒前
成就映秋发布了新的文献求助30
3秒前
科研通AI2S应助坤坤采纳,获得10
3秒前
整齐芷文完成签到,获得积分10
4秒前
科研通AI5应助小马哥36采纳,获得10
4秒前
灵巧荆发布了新的文献求助10
5秒前
小二郎应助侦察兵采纳,获得10
5秒前
爆米花完成签到 ,获得积分10
5秒前
今后应助Evan123采纳,获得10
5秒前
凤凰之玉完成签到 ,获得积分10
6秒前
shi hui应助冬瓜炖排骨采纳,获得10
6秒前
7秒前
dyh6802发布了新的文献求助10
7秒前
冷静雅青发布了新的文献求助10
7秒前
CipherSage应助猪猪hero采纳,获得10
8秒前
领导范儿应助不凡采纳,获得30
8秒前
顾矜应助坚定的亦绿采纳,获得10
9秒前
9秒前
yu完成签到,获得积分10
9秒前
Chris完成签到,获得积分10
10秒前
cookie发布了新的文献求助10
11秒前
胖仔完成签到,获得积分10
11秒前
Chan0501完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
duxinyue发布了新的文献求助10
13秒前
汉堡转转转完成签到,获得积分10
14秒前
喵酱发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794