亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of RepVGG on Small Sized Dandelion Images Dataset in terms of Transfer Learning, Regularization, Spatial Attention as well as Squeeze and Excitation Blocks

块(置换群论) 计算机科学 人工智能 蒲公英 深度学习 学习迁移 模式识别(心理学) 机器学习 正规化(语言学) 数学 几何学 中医药 替代医学 医学 病理
作者
Mehmet Nergiz
出处
期刊:2021 6th International Conference on Computer Science and Engineering (UBMK) 被引量:5
标识
DOI:10.1109/ubmk52708.2021.9558941
摘要

The automated weed detection is an important research field in terms of agricultural productivity and economy. This study aims to apply RepVGG which is a new deep learning architecture developed on PyTorch framework and has promising results when trained and tested on ImageNet1K dataset. 920 images of the small sized Dandelion Images dataset is used for this study. Pretrained vanilla, pretrained and dropout regularized, squeeze and excitation block added and spatial attention block added versions of RepVGG are tested on the dataset. VGG16 method is also applied to the dataset and the results of the MobileNetV2 method is taken from the Kaggle Competition to get an insight about the baseline results of the classical state of the art models. The proposed RepVGG modifications could not outperform the state of the art methods on this dataset but the effect of the modifications are deeply analyzed and the best configuration is obtained by Squeeze and Excitation block added RepVGG-A0 architecture which is trained from scratch for 5 epochs and provided results of 0,875, 0,665, 0,89 and 0,74 for Accuracy, Recall, Precision and F1 metrics respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI6应助xiaozhou采纳,获得10
4秒前
Lifel完成签到 ,获得积分10
9秒前
18秒前
29秒前
Ava应助xiaozhou采纳,获得10
30秒前
山雨微凉发布了新的文献求助10
32秒前
沉静的安青完成签到,获得积分10
33秒前
48秒前
科研通AI6应助山雨微凉采纳,获得10
49秒前
体贴花卷发布了新的文献求助10
51秒前
Ava应助世良采纳,获得10
53秒前
57秒前
归尘应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
古月完成签到,获得积分10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
Ava应助hxh采纳,获得10
1分钟前
企鹅完成签到,获得积分20
1分钟前
1分钟前
check003完成签到,获得积分10
1分钟前
ding应助企鹅采纳,获得10
1分钟前
科研通AI6应助浪里白条采纳,获得10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
kouxinyao完成签到 ,获得积分10
1分钟前
1分钟前
不说再见完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
元宝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
虚心依白发布了新的文献求助10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399