Delphi: Towards Machine Ethics and Norms

阅读(过程) 规范(哲学) 计算机科学 心理学 人工智能 认识论 社会心理学 政治学 法学 哲学
作者
Liwei Jiang,Jena D. Hwang,Chandra Bhagavatula,Ronan Le Bras,Maxwell Forbes,Jon Borchardt,Jing Liang,Oren Etzioni,Maarten Sap,Yejin Choi
出处
期刊:Cornell University - arXiv 被引量:18
摘要

What would it take to teach a machine to behave ethically? While broad ethical rules may seem straightforward to state (thou shalt not kill), applying such rules to real-world situations is far more complex. For example, while helping a is generally a good thing to do, helping a friend spread fake news is not. We identify four underlying challenges towards machine ethics and norms: (1) an understanding of moral precepts and social norms; (2) the ability to perceive real-world situations visually or by reading natural language descriptions; (3) commonsense reasoning to anticipate the outcome of alternative actions in different contexts; (4) most importantly, the ability to make ethical judgments given the interplay between competing values and their grounding in different contexts (e.g., the right to freedom of expression vs. preventing the spread of fake news). Our paper begins to address these questions within the deep learning paradigm. Our prototype model, Delphi, demonstrates strong promise of language-based commonsense moral reasoning, with up to 92.1% accuracy vetted by humans. This is in stark contrast to the zero-shot performance of GPT-3 of 52.3%, which suggests that massive scale alone does not endow pre-trained neural language models with human values. Thus, we present Commonsense Norm Bank, a moral textbook customized for machines, which compiles 1.7M examples of people's ethical judgments on a broad spectrum of everyday situations. In addition to the new resources and baseline performances for future research, our study provides new insights that lead to several important open research questions: differentiating between universal human values and personal values, modeling different moral frameworks, and explainable, consistent approaches to machine ethics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
5年科研3年毕业完成签到,获得积分10
1秒前
2秒前
2秒前
曲书文完成签到,获得积分10
3秒前
96完成签到 ,获得积分10
3秒前
4秒前
科研通AI2S应助风中浩天采纳,获得10
4秒前
junsizzz完成签到,获得积分10
5秒前
呼噜噜发布了新的文献求助10
6秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
8秒前
不配.应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
xjcy应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
一石二鸟应助科研通管家采纳,获得10
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
Shirley应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Clover完成签到 ,获得积分10
10秒前
11秒前
天天快乐应助阿园采纳,获得10
12秒前
hua完成签到,获得积分10
12秒前
111完成签到,获得积分10
13秒前
IAMXC发布了新的文献求助10
13秒前
13秒前
Tokgo发布了新的文献求助10
14秒前
852发布了新的文献求助10
14秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194