Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review

亚临床感染 圆锥角膜 算法 机器学习 科克伦图书馆 人工智能 计算机科学 医学 梅德林 荟萃分析 角膜 眼科 病理 政治学 法学
作者
Howard Maile,Ji-Peng Olivia Li,Daniel M. Gore,Marcello Leucci,Pádraig J. Mulholland,Scott Hau,Anita Szabó,Ismail Moghul,Konstantinos Balaskas,Kaoru Fujinami,Pirro G. Hysi,Alice E. Davidson,Petra Lišková,Alison J. Hardcastle,Stephen J. Tuft,Nikolas Pontikos
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:9 (12): e27363-e27363 被引量:21
标识
DOI:10.2196/27363
摘要

Background Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures, such as corneal imaging, aberrometry, or biomechanical measurements. Objective The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical keratoconus and equivalent definitions. Methods For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations. Results We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported in this study. Conclusions Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early treatment to prevent disease progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卟卟完成签到,获得积分10
刚刚
1秒前
涛哥来科研完成签到 ,获得积分10
2秒前
zgtmark完成签到,获得积分10
2秒前
瘦瘦的寒珊完成签到 ,获得积分10
2秒前
hony完成签到,获得积分10
2秒前
ruuuu发布了新的文献求助10
3秒前
pink发布了新的文献求助10
4秒前
happy123完成签到,获得积分10
4秒前
jia发布了新的文献求助10
5秒前
iNk应助友好的板栗采纳,获得20
5秒前
Kamal完成签到,获得积分10
6秒前
雨淋沐风发布了新的文献求助10
7秒前
搬石头发布了新的文献求助10
7秒前
万能毒药完成签到 ,获得积分10
7秒前
mlzmlz完成签到,获得积分10
8秒前
8秒前
云轻完成签到 ,获得积分10
9秒前
Jyh完成签到,获得积分10
9秒前
77完成签到 ,获得积分10
9秒前
11秒前
ding应助小鱼采纳,获得10
11秒前
11秒前
11秒前
12秒前
研友_ndDGVn完成签到,获得积分10
13秒前
考虑考虑完成签到,获得积分20
13秒前
王菲完成签到,获得积分10
13秒前
Ava应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812