BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation

计算机科学 分割 人工智能 特征(语言学) 推论 语义学(计算机科学) 频道(广播) 增采样 模式识别(心理学) 深度学习 图像(数学) 计算机网络 语言学 哲学 程序设计语言
作者
Changqian Yu,Changxin Gao,Jingbo Wang,Gang Yu,Chunhua Shen,Nong Sang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (11): 3051-3068 被引量:1396
标识
DOI:10.1007/s11263-021-01515-2
摘要

Low-level details and high-level semantics are both essential to the semantic segmentation task. However, to speed up the model inference, current approaches almost always sacrifice the low-level details, leading to a considerable decrease in accuracy. We propose to treat these spatial details and categorical semantics separately to achieve high accuracy and high efficiency for real-time semantic segmentation. For this purpose, we propose an efficient and effective architecture with a good trade-off between speed and accuracy, termed Bilateral Segmentation Network (BiSeNet V2). This architecture involves the following: (i) A detail branch, with wide channels and shallow layers to capture low-level details and generate high-resolution feature representation; (ii) A semantics branch, with narrow channels and deep layers to obtain high-level semantic context. The detail branch has wide channel dimensions and shallow layers, while the semantics branch has narrow channel dimensions and deep layers. Due to the reduction in the channel capacity and the use of a fast-downsampling strategy, the semantics branch is lightweight and can be implemented by any efficient model. We design a guided aggregation layer to enhance mutual connections and fuse both types of feature representation. Moreover, a booster training strategy is designed to improve the segmentation performance without any extra inference cost. Extensive quantitative and qualitative evaluations demonstrate that the proposed architecture shows favorable performance compared to several state-of-the-art real-time semantic segmentation approaches. Specifically, for a $$2048\times 1024$$ input, we achieve 72.6% Mean IoU on the Cityscapes test set with a speed of 156 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods, yet we achieve better segmentation accuracy. The code and trained models are available online at https://git.io/BiSeNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsh发布了新的文献求助10
1秒前
1秒前
2秒前
张不张完成签到,获得积分10
2秒前
胖大星发布了新的文献求助10
2秒前
健忘的自行车完成签到,获得积分10
2秒前
洛言lj完成签到,获得积分10
2秒前
笨笨的翠发布了新的文献求助10
3秒前
AIR完成签到,获得积分10
3秒前
3秒前
靓丽的沁发布了新的文献求助10
3秒前
3秒前
huanghanjing发布了新的文献求助10
4秒前
Bwq完成签到,获得积分10
4秒前
Tourist应助魔幻的夜柳采纳,获得10
4秒前
5秒前
充电宝应助秧秧采纳,获得10
5秒前
fanfan44390发布了新的文献求助10
6秒前
daytoy完成签到 ,获得积分10
7秒前
ACE发布了新的文献求助10
7秒前
7秒前
科研通AI6应助罗罗采纳,获得10
7秒前
天天好心情关注了科研通微信公众号
7秒前
韭菜完成签到,获得积分20
7秒前
7秒前
踏实十三关注了科研通微信公众号
8秒前
陶醉的琦发布了新的文献求助10
8秒前
XRECP发布了新的文献求助10
8秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
奋斗灵珊发布了新的文献求助10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
洛言lj发布了新的文献求助10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406