BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation

计算机科学 分割 人工智能 特征(语言学) 推论 语义学(计算机科学) 频道(广播) 增采样 模式识别(心理学) 深度学习 图像(数学) 计算机网络 语言学 哲学 程序设计语言
作者
Changqian Yu,Changxin Gao,Jingbo Wang,Gang Yu,Chunhua Shen,Nong Sang
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:129 (11): 3051-3068 被引量:1195
标识
DOI:10.1007/s11263-021-01515-2
摘要

Low-level details and high-level semantics are both essential to the semantic segmentation task. However, to speed up the model inference, current approaches almost always sacrifice the low-level details, leading to a considerable decrease in accuracy. We propose to treat these spatial details and categorical semantics separately to achieve high accuracy and high efficiency for real-time semantic segmentation. For this purpose, we propose an efficient and effective architecture with a good trade-off between speed and accuracy, termed Bilateral Segmentation Network (BiSeNet V2). This architecture involves the following: (i) A detail branch, with wide channels and shallow layers to capture low-level details and generate high-resolution feature representation; (ii) A semantics branch, with narrow channels and deep layers to obtain high-level semantic context. The detail branch has wide channel dimensions and shallow layers, while the semantics branch has narrow channel dimensions and deep layers. Due to the reduction in the channel capacity and the use of a fast-downsampling strategy, the semantics branch is lightweight and can be implemented by any efficient model. We design a guided aggregation layer to enhance mutual connections and fuse both types of feature representation. Moreover, a booster training strategy is designed to improve the segmentation performance without any extra inference cost. Extensive quantitative and qualitative evaluations demonstrate that the proposed architecture shows favorable performance compared to several state-of-the-art real-time semantic segmentation approaches. Specifically, for a $$2048\times 1024$$ input, we achieve 72.6% Mean IoU on the Cityscapes test set with a speed of 156 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods, yet we achieve better segmentation accuracy. The code and trained models are available online at https://git.io/BiSeNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助WangJie采纳,获得10
刚刚
刚刚
王思睿发布了新的文献求助10
1秒前
1秒前
陈doctor完成签到 ,获得积分10
4秒前
4秒前
4秒前
欣欣发布了新的文献求助10
4秒前
4秒前
煜琪发布了新的文献求助10
5秒前
test完成签到,获得积分10
6秒前
ningyan完成签到,获得积分10
6秒前
充电宝应助冷傲达采纳,获得10
6秒前
yangdage发布了新的文献求助10
7秒前
7秒前
卯一完成签到,获得积分10
7秒前
充电宝应助hd采纳,获得10
8秒前
卿落完成签到,获得积分10
9秒前
du发布了新的文献求助10
9秒前
星辰大海应助番西茄采纳,获得10
9秒前
eccentric发布了新的文献求助10
9秒前
大黄完成签到,获得积分10
9秒前
10秒前
远方完成签到,获得积分10
10秒前
英俊的铭应助zzz采纳,获得10
11秒前
wang完成签到,获得积分10
12秒前
爱爱精神境界完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
14秒前
科研通AI5应助摆烂采纳,获得10
14秒前
balabala完成签到,获得积分10
15秒前
快乐的柚子应助煜琪采纳,获得10
15秒前
赘婿应助zhq采纳,获得10
15秒前
zzzzzy发布了新的文献求助10
15秒前
Orange应助一块闲土豆采纳,获得10
15秒前
王妍发布了新的文献求助10
15秒前
Aminoacid完成签到,获得积分10
17秒前
小北完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002106
求助须知:如何正确求助?哪些是违规求助? 4247275
关于积分的说明 13232509
捐赠科研通 4046104
什么是DOI,文献DOI怎么找? 2213436
邀请新用户注册赠送积分活动 1223482
关于科研通互助平台的介绍 1143864