清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation

计算机科学 分割 人工智能 特征(语言学) 推论 语义学(计算机科学) 频道(广播) 增采样 模式识别(心理学) 深度学习 图像(数学) 计算机网络 语言学 哲学 程序设计语言
作者
Changqian Yu,Changxin Gao,Jingbo Wang,Gang Yu,Chunhua Shen,Nong Sang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (11): 3051-3068 被引量:1396
标识
DOI:10.1007/s11263-021-01515-2
摘要

Low-level details and high-level semantics are both essential to the semantic segmentation task. However, to speed up the model inference, current approaches almost always sacrifice the low-level details, leading to a considerable decrease in accuracy. We propose to treat these spatial details and categorical semantics separately to achieve high accuracy and high efficiency for real-time semantic segmentation. For this purpose, we propose an efficient and effective architecture with a good trade-off between speed and accuracy, termed Bilateral Segmentation Network (BiSeNet V2). This architecture involves the following: (i) A detail branch, with wide channels and shallow layers to capture low-level details and generate high-resolution feature representation; (ii) A semantics branch, with narrow channels and deep layers to obtain high-level semantic context. The detail branch has wide channel dimensions and shallow layers, while the semantics branch has narrow channel dimensions and deep layers. Due to the reduction in the channel capacity and the use of a fast-downsampling strategy, the semantics branch is lightweight and can be implemented by any efficient model. We design a guided aggregation layer to enhance mutual connections and fuse both types of feature representation. Moreover, a booster training strategy is designed to improve the segmentation performance without any extra inference cost. Extensive quantitative and qualitative evaluations demonstrate that the proposed architecture shows favorable performance compared to several state-of-the-art real-time semantic segmentation approaches. Specifically, for a $$2048\times 1024$$ input, we achieve 72.6% Mean IoU on the Cityscapes test set with a speed of 156 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods, yet we achieve better segmentation accuracy. The code and trained models are available online at https://git.io/BiSeNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
4秒前
11秒前
littleyi发布了新的文献求助10
16秒前
虎牙少年完成签到,获得积分10
23秒前
慕青应助littleyi采纳,获得10
26秒前
氿瑛完成签到,获得积分10
32秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
奶奶的龙应助科研通管家采纳,获得10
43秒前
华仔应助科研通管家采纳,获得10
43秒前
51秒前
xiang完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
3分钟前
3分钟前
大雁完成签到 ,获得积分0
3分钟前
老老熊完成签到,获得积分10
3分钟前
Una完成签到,获得积分10
3分钟前
合作完成签到 ,获得积分10
4分钟前
欣欣完成签到,获得积分10
4分钟前
一天完成签到 ,获得积分10
4分钟前
甜甜的静柏完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
奶奶的龙应助科研通管家采纳,获得30
4分钟前
sujingbo完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016