Influence of age and scanning system on the learning curve of experienced and novel intraoral scanner operators: A multi-centric clinical trial.

扫描仪 方差分析 相关性 皮尔逊积矩相关系数 重复措施设计 志愿者 数学 医学 计算机科学 统计 人工智能 几何学 农学 生物
作者
Cristina Zarauz,Irena Sailer,João Pitta,Mercedes Robles-Medina,Abra Abdulahai Hussein,Guillermo Pradíes
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:115: 103860-103860 被引量:12
标识
DOI:10.1016/j.jdent.2021.103860
摘要

To evaluate the effect of age and intra-oral scanner (IOS) on the learning curve of inexperienced operators.Thirty-four operators pertaining to 1 of 3 groups: (G1) students ≤ 25 years (y), (G2) dentists ≥ 40y, and (G3) a control group of experienced IOS operators (no age limitation), were included. All participants performed baseline and final quadrant scans on a volunteer subject, before and after a training program of 3 sessions, with two different IOS: TRIOS 3 (S1) and True Definition (S2). Baseline and final scanning times were registered in seconds. A Pearson correlation was applied to evaluate the correlation between age and scanning time. An ANOVA of repeated measures test was applied to evaluate inter-group (G1, G2, G3) and inter-system performance. Significance level was set at a = 0.05.Age and scanning time for inexperienced operators showed a weak positive correlation for final scanning time (r = 0.29, p < 0.05). When comparing groups and filtering by IOS, S1 failed to show differences between groups (p > 0.05). With S2, the control group demonstrated a better performance than G2 (p < 0.05), while G1 only demonstrated a better performance than G2 at final scanning time (p = 0.005). Overall, the type of IOS had a significant impact on the scanning time (p < 0.001).Results from this study indicate that age and type of IOS have an impact on the performance and learning curve of inexperienced IOS operators.Gaining knowledge on how different aspects, such as age, experience or IOS system, influence the learning curve to IOSs is relevant due to the financial and strategical impact associated with the acquisition of an IOS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
HJJHJH发布了新的文献求助10
1秒前
霜霜发布了新的文献求助10
1秒前
称心小松鼠完成签到 ,获得积分20
1秒前
蛐蛐发布了新的文献求助10
2秒前
wonder041应助虚幻的水之采纳,获得10
2秒前
薛薛完成签到 ,获得积分10
2秒前
bear发布了新的文献求助10
2秒前
2秒前
瑞祯完成签到,获得积分10
2秒前
完美世界应助sinan采纳,获得10
2秒前
Jasper应助ss采纳,获得10
2秒前
研友_VZG7GZ应助灵巧代柔采纳,获得10
3秒前
3秒前
青原发布了新的文献求助10
3秒前
4秒前
orixero应助开放的傲柔采纳,获得10
4秒前
不晚完成签到,获得积分10
4秒前
LIU发布了新的文献求助10
4秒前
刘璇1发布了新的文献求助10
4秒前
今后应助Zhuzhumaster采纳,获得10
4秒前
lhy完成签到,获得积分10
4秒前
大力猫崽完成签到 ,获得积分10
4秒前
王侯发布了新的文献求助10
5秒前
科研通AI5应助我的miemie采纳,获得10
5秒前
领导范儿应助HJJHJH采纳,获得10
5秒前
5秒前
大个应助怡然的芯采纳,获得10
6秒前
CodeCraft应助祭天丶易木采纳,获得10
7秒前
7秒前
8秒前
梦旋发布了新的文献求助10
8秒前
KKIII发布了新的文献求助10
8秒前
8秒前
小二郎应助千冬采纳,获得10
9秒前
大胖完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399