AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 化学 高分子化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:26
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
找文献发布了新的文献求助30
1秒前
2秒前
4秒前
今后应助葡萄成熟采纳,获得10
4秒前
999发布了新的文献求助10
6秒前
wu发布了新的文献求助10
6秒前
CodeCraft应助Hanny采纳,获得10
6秒前
7秒前
7秒前
許1111完成签到 ,获得积分10
7秒前
芝麻省理工大学高材生完成签到,获得积分10
8秒前
鲤鱼笑白发布了新的文献求助10
8秒前
兜里没糖完成签到,获得积分10
8秒前
彼岸发布了新的文献求助10
9秒前
www完成签到,获得积分10
10秒前
马哥二弟无敌完成签到 ,获得积分10
12秒前
心杨发布了新的文献求助10
12秒前
Ava应助xxxxxb采纳,获得10
13秒前
16秒前
benben应助BOHO采纳,获得10
16秒前
耍酷糜完成签到 ,获得积分10
18秒前
qq完成签到 ,获得积分10
18秒前
18秒前
ywb完成签到,获得积分10
20秒前
赛赛发布了新的文献求助10
21秒前
学习发布了新的文献求助10
22秒前
乌鸡鲅鱼发布了新的文献求助10
22秒前
25秒前
NexusExplorer应助wu采纳,获得10
26秒前
科研通AI2S应助大强采纳,获得10
26秒前
美丽的梦桃完成签到,获得积分10
28秒前
28秒前
ardejiang发布了新的文献求助10
29秒前
大模型应助雨季采纳,获得10
29秒前
神雕侠发布了新的文献求助10
31秒前
33秒前
lm18994782585完成签到,获得积分10
34秒前
z1z1z完成签到,获得积分10
34秒前
Leolefroy发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919