AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 化学 高分子化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一坨完成签到 ,获得积分10
刚刚
zcz完成签到 ,获得积分0
2秒前
范礼运20810完成签到 ,获得积分10
3秒前
3秒前
内向的青荷完成签到,获得积分10
3秒前
3秒前
clarklkq完成签到,获得积分10
3秒前
WUWU2435完成签到,获得积分10
3秒前
小米完成签到,获得积分20
4秒前
5秒前
wwf完成签到,获得积分10
5秒前
想早点退休完成签到,获得积分10
5秒前
6秒前
无花果应助枕雪听冷冷采纳,获得30
6秒前
7秒前
头号玩家发布了新的文献求助10
9秒前
GongSyi完成签到 ,获得积分10
10秒前
6666666666完成签到 ,获得积分10
10秒前
ZQJ完成签到,获得积分20
10秒前
11秒前
花花发布了新的文献求助10
12秒前
ethyxwat发布了新的文献求助10
12秒前
嗨是完成签到,获得积分10
12秒前
ZQJ发布了新的文献求助20
13秒前
流川枫完成签到,获得积分10
13秒前
星月夜完成签到,获得积分10
14秒前
Lucas应助诚心茈采纳,获得10
14秒前
白藤总是一坨肉完成签到 ,获得积分10
14秒前
Yly发布了新的文献求助10
15秒前
16秒前
共渡完成签到,获得积分10
17秒前
吧KO完成签到,获得积分10
17秒前
时舒完成签到 ,获得积分10
18秒前
古藤完成签到 ,获得积分10
19秒前
whg完成签到,获得积分10
19秒前
酷波er应助郭志倩采纳,获得10
20秒前
小背包完成签到 ,获得积分10
21秒前
666发布了新的文献求助10
21秒前
wanci应助郑关胜采纳,获得10
22秒前
Jasper应助终梦采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910842
求助须知:如何正确求助?哪些是违规求助? 4186455
关于积分的说明 12999825
捐赠科研通 3954044
什么是DOI,文献DOI怎么找? 2168261
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909