AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 高分子化学 化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
allia完成签到 ,获得积分10
刚刚
张张完成签到,获得积分10
3秒前
幽默的雁开完成签到,获得积分10
4秒前
mobay完成签到,获得积分20
5秒前
5秒前
5秒前
超人发布了新的文献求助10
6秒前
顾矜应助琉璃采纳,获得10
6秒前
7秒前
7秒前
8秒前
自由的便当完成签到,获得积分10
8秒前
风中冰香应助细腻半仙采纳,获得10
8秒前
打打应助木子西采纳,获得10
9秒前
Van发布了新的文献求助10
10秒前
lysenko完成签到 ,获得积分10
11秒前
12秒前
呼啦啦发布了新的文献求助10
13秒前
fantastic发布了新的文献求助10
13秒前
FAN完成签到,获得积分10
14秒前
说话的月亮完成签到,获得积分10
14秒前
李佳璐完成签到 ,获得积分20
14秒前
15秒前
13ing完成签到,获得积分10
16秒前
16秒前
Akim应助负责的方盒采纳,获得30
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
Kenny完成签到,获得积分10
17秒前
19秒前
123456hhh完成签到,获得积分10
20秒前
呼啦啦完成签到,获得积分20
20秒前
美味吐司完成签到,获得积分10
20秒前
21秒前
22秒前
无辜凤凰发布了新的文献求助10
22秒前
悄悄.完成签到 ,获得积分10
22秒前
22秒前
寒冬完成签到,获得积分10
25秒前
陌上花开发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428202
求助须知:如何正确求助?哪些是违规求助? 4542308
关于积分的说明 14179543
捐赠科研通 4459846
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878