亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 高分子化学 化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rr完成签到,获得积分10
38秒前
胖小羊完成签到 ,获得积分10
51秒前
在水一方应助科研通管家采纳,获得10
1分钟前
1分钟前
施光玲44931完成签到 ,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
2分钟前
天天快乐应助VDC采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
是菜团子呀完成签到 ,获得积分10
3分钟前
娜娜子完成签到 ,获得积分10
3分钟前
3分钟前
VDC发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小柯基学从零学起完成签到 ,获得积分10
3分钟前
FashionBoy应助独特的师采纳,获得10
3分钟前
饺子完成签到,获得积分10
4分钟前
风停了完成签到,获得积分10
4分钟前
酷波er应助开朗子默采纳,获得20
4分钟前
老石完成签到 ,获得积分10
5分钟前
cccc完成签到,获得积分10
6分钟前
浮游应助Wei采纳,获得10
6分钟前
6分钟前
隐形曼青应助盐碱地杂草采纳,获得10
6分钟前
笨笨的怜雪完成签到 ,获得积分10
6分钟前
6分钟前
深情安青应助阳光可仁采纳,获得10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
Wei发布了新的文献求助10
7分钟前
7分钟前
阳光可仁发布了新的文献求助10
7分钟前
8分钟前
8分钟前
阳光可仁完成签到,获得积分10
8分钟前
8分钟前
盐碱地杂草完成签到,获得积分10
8分钟前
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470336
求助须知:如何正确求助?哪些是违规求助? 4573151
关于积分的说明 14338164
捐赠科研通 4500230
什么是DOI,文献DOI怎么找? 2465618
邀请新用户注册赠送积分活动 1453965
关于科研通互助平台的介绍 1428623