AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 化学 高分子化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinqin发布了新的文献求助10
1秒前
顾夏包发布了新的文献求助30
1秒前
钰宁发布了新的文献求助10
1秒前
NexusExplorer应助ZZZ采纳,获得10
2秒前
3秒前
顺心书琴完成签到,获得积分10
3秒前
习习应助Nifeng采纳,获得10
3秒前
mrmrer发布了新的文献求助10
3秒前
5秒前
MUSTer一一完成签到 ,获得积分10
5秒前
通通通完成签到,获得积分10
5秒前
5秒前
务实的菓完成签到 ,获得积分10
6秒前
似水流年完成签到,获得积分10
6秒前
An慧完成签到,获得积分10
6秒前
Hello应助阿金采纳,获得10
6秒前
6秒前
6秒前
8秒前
顾夏包完成签到,获得积分10
8秒前
小土豆发布了新的文献求助50
9秒前
科研通AI5应助跑在颖采纳,获得10
9秒前
追寻代真发布了新的文献求助10
10秒前
mrmrer完成签到,获得积分20
10秒前
10秒前
10秒前
毛慢慢发布了新的文献求助10
11秒前
11秒前
今天不学习明天变垃圾完成签到,获得积分10
11秒前
12秒前
12秒前
布布完成签到,获得积分10
13秒前
一独白发布了新的文献求助10
13秒前
周周完成签到 ,获得积分10
13秒前
淡然完成签到,获得积分10
14秒前
明理小土豆完成签到,获得积分10
14秒前
刘国建郭菱香完成签到,获得积分10
14秒前
嘤嘤嘤完成签到,获得积分10
14秒前
九川应助粱自中采纳,获得10
14秒前
无辜之卉完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762