亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 高分子化学 化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助zizideng采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
26秒前
31秒前
zizideng发布了新的文献求助10
36秒前
zizideng完成签到,获得积分10
45秒前
h0jian09完成签到,获得积分10
1分钟前
爆米花应助zhangxiaoqing采纳,获得10
1分钟前
小二郎应助达西苏采纳,获得10
1分钟前
1分钟前
笑傲完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zhangxiaoqing发布了新的文献求助10
2分钟前
2分钟前
达西苏发布了新的文献求助10
2分钟前
达西苏完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小青椒应助霸气面包采纳,获得10
3分钟前
pups发布了新的文献求助10
3分钟前
3分钟前
wmm完成签到,获得积分10
3分钟前
Jasper应助pups采纳,获得20
4分钟前
Wei发布了新的文献求助20
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
不如看海完成签到 ,获得积分10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助信陵君无忌采纳,获得10
4分钟前
原子超人完成签到,获得积分10
5分钟前
wanci应助ma采纳,获得10
5分钟前
5分钟前
ma发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
支雨泽完成签到,获得积分10
6分钟前
6分钟前
桐桐应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523