AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 化学 高分子化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lin发布了新的文献求助10
1秒前
雅雅完成签到,获得积分10
1秒前
2秒前
只剩下55完成签到,获得积分10
3秒前
3秒前
4秒前
李某发布了新的文献求助10
5秒前
7秒前
yemuan完成签到,获得积分10
8秒前
yzWang发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
13秒前
TQ完成签到,获得积分10
14秒前
雪糕考研发布了新的文献求助20
14秒前
屠夫9441完成签到 ,获得积分10
16秒前
英吉利25发布了新的文献求助10
16秒前
17秒前
18秒前
carrier_hc发布了新的文献求助50
19秒前
flasher22发布了新的文献求助10
20秒前
漪涙完成签到,获得积分10
20秒前
21秒前
葱姜蒜留下了新的社区评论
21秒前
23秒前
豌豆发布了新的文献求助10
23秒前
荣艺完成签到,获得积分10
24秒前
耶的猫发布了新的文献求助10
24秒前
26秒前
dudu发布了新的文献求助10
27秒前
ccm发布了新的文献求助20
28秒前
29秒前
亚当完成签到 ,获得积分10
29秒前
木木完成签到,获得积分10
30秒前
30秒前
ddd完成签到 ,获得积分10
31秒前
SYLH应助dhh采纳,获得30
31秒前
邱老黑发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547