已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound

计算机科学 弹性成像 人工智能 超声波 情态动词 放射科 医学 模式识别(心理学) 模态(人机交互) 加权 机器学习 高分子化学 化学
作者
Ruobing Huang,Zehui Lin,Haoran Dou,Jian Wang,Juzheng Miao,Guangquan Zhou,Xiaohong Jia,Wenwen Xu,Zihan Mei,Yijie Dong,Xin Yang,JianQiao Zhou,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:72: 102137-102137 被引量:31
标识
DOI:10.1016/j.media.2021.102137
摘要

Recently, more clinicians have realized the diagnostic value of multi-modal ultrasound in breast cancer identification and began to incorporate Doppler imaging and Elastography in the routine examination. However, accurately recognizing patterns of malignancy in different types of sonography requires expertise. Furthermore, an accurate and robust diagnosis requires proper weights of multi-modal information as well as the ability to process missing data in practice. These two aspects are often overlooked by existing computer-aided diagnosis (CAD) approaches. To overcome these challenges, we propose a novel framework (called AW3M) that utilizes four types of sonography (i.e. B-mode, Doppler, Shear-wave Elastography, and Strain Elastography) jointly to assist breast cancer diagnosis. It can extract both modality-specific and modality-invariant features using a multi-stream CNN model equipped with self-supervised consistency loss. Instead of assigning the weights of different streams empirically, AW3M automatically learns the optimal weights using reinforcement learning techniques. Furthermore, we design a light-weight recovery block that can be inserted to a trained model to handle different modality-missing scenarios. Experimental results on a large multi-modal dataset demonstrate that our method can achieve promising performance compared with state-of-the-art methods. The AW3M framework is also tested on another independent B-mode dataset to prove its efficacy in general settings. Results show that the proposed recovery block can learn from the joint distribution of multi-modal features to further boost the classification accuracy given single modality input during the test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
xxfsx应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
3秒前
yyyhhhzzz0123发布了新的文献求助30
4秒前
arisw发布了新的文献求助10
4秒前
zhs发布了新的文献求助10
7秒前
9秒前
生椰拿铁死忠粉应助minya采纳,获得20
14秒前
妮妮完成签到 ,获得积分10
14秒前
李健的小迷弟应助北斗采纳,获得10
18秒前
坚定的泥猴桃完成签到 ,获得积分10
20秒前
阿泡阿茶和阿壶完成签到,获得积分10
23秒前
维维完成签到 ,获得积分10
24秒前
脑洞疼应助哭泣的若翠采纳,获得10
25秒前
26秒前
wanghao完成签到 ,获得积分10
26秒前
shjyang完成签到,获得积分0
28秒前
29秒前
芋泥发布了新的文献求助10
30秒前
30秒前
赘婿应助威海大雪采纳,获得10
31秒前
Qiancheng完成签到 ,获得积分10
31秒前
专注的芷完成签到 ,获得积分10
31秒前
归海梦岚完成签到,获得积分0
32秒前
安静店员发布了新的文献求助10
33秒前
北溟鱼发布了新的文献求助10
34秒前
顺心凡之完成签到,获得积分10
34秒前
无花果应助芋泥采纳,获得10
35秒前
叮叮完成签到 ,获得积分10
37秒前
hnx1005完成签到 ,获得积分10
38秒前
含糊的蚂蚁完成签到 ,获得积分10
44秒前
小番茄完成签到 ,获得积分10
46秒前
香菜头完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275