库存(枪支)
股票价格
股票市场
计量经济学
深度学习
收益
技术分析
金融经济学
经济
计算机科学
人工智能
财务
工程类
系列(地层学)
古生物学
生物
机械工程
马
作者
Qingfu Liu,Zhenyi Tao,Yiuman Tse,Chuanjie Wang
标识
DOI:10.1016/j.frl.2021.102209
摘要
We consider stock price charts as images and use deep learning neural networks (DLNNs) for image modeling. DLNNs can imitate the work of a technical analyst to predict stock price movements in the short term with price charts and stock fundamentals (e.g., price-to-earnings ratio). We find that a deep learning model performs better than a single-layer model in the prediction of the Chinese stock market. DLNNs provide customizable statistical tools for analyzing price charts effectively. More importantly, price trends established by different periods of past daily closing prices dominate stock fundamentals in predicting future price movements.
科研通智能强力驱动
Strongly Powered by AbleSci AI