Aquatic organism recognition using residual network with inner feature and kernel calibration module

有机体 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 判别式 核(代数) 特征(语言学) 残余物 生物 数学 算法 语言学 组合数学 哲学 古生物学
作者
Chenggang Dai,Mingxing Lin,Zhiguang Guan,Yanjun Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106366-106366 被引量:2
标识
DOI:10.1016/j.compag.2021.106366
摘要

Aquatic organism recognition is a core technology for fishing industry automation and aquatic organism statistical research. However, owing to absorption and scattering effects, images of aquatic organisms generally present poor contrast and color distortions, weakening the discriminative representations and decreasing the recognition accuracy. In this study, an inner feature and kernel calibration module is proposed for improving the recognition accuracy by aggregating informative features. Specifically, a set of features in one convolutional layer is split into two portions, each of which is fed to different flows. One flow contributes to emphasizing significant features, whereas the other is responsible for calibrating convolutional kernels. Consequently, the proposed module can effectively encode prominent features, and obtain dynamic convolutional kernels. Moreover, in view of a lack of aquatic organism examples, we collect 22,806 images of aquatic organisms and form a database for aquatic organism recognition containing 20 classes of common aquatic organisms. Finally, comprehensive experiments validate that the proposed module improves the performance of convolutional neural networks in a variety of recognition tasks, without any additional overhead. Specifically, the proposed module improves the top-1 accuracy to 95.7%, 97.1%, and 78.9% for the aquatic organism database and two public databases, respectively. Thus, this study could be beneficial for aquatic organism monitoring and automatic fishing, and can provide training data for other aquatic organism recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助123采纳,获得10
刚刚
Long完成签到,获得积分10
刚刚
1秒前
晚生四时完成签到,获得积分10
1秒前
1秒前
1秒前
长情洙发布了新的文献求助10
1秒前
天真的宝马完成签到,获得积分10
1秒前
2秒前
肉松小贝完成签到,获得积分10
2秒前
3秒前
3秒前
HEIKU应助yangyangyang采纳,获得10
3秒前
Esfuerzo完成签到,获得积分10
3秒前
科研通AI5应助安静的安寒采纳,获得10
4秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
4秒前
royan2完成签到,获得积分10
4秒前
阿勒泰完成签到,获得积分10
4秒前
小于爱科研完成签到,获得积分10
4秒前
4秒前
zkc完成签到,获得积分10
4秒前
4秒前
luo发布了新的文献求助30
4秒前
雾蓝发布了新的文献求助10
4秒前
5秒前
zhang发布了新的文献求助10
5秒前
佳佳发布了新的文献求助10
6秒前
royan2发布了新的文献求助10
6秒前
6秒前
zkc发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
沐沐君完成签到,获得积分10
7秒前
nancyzhy完成签到,获得积分10
7秒前
当时明月在完成签到,获得积分0
7秒前
共享精神应助无情念之采纳,获得10
8秒前
zhenzhen发布了新的文献求助10
8秒前
韭黄发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759