Aquatic organism recognition using residual network with inner feature and kernel calibration module

有机体 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 判别式 核(代数) 特征(语言学) 残余物 生物 数学 算法 语言学 组合数学 哲学 古生物学
作者
Chenggang Dai,Mingxing Lin,Zhiguang Guan,Yanjun Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106366-106366 被引量:2
标识
DOI:10.1016/j.compag.2021.106366
摘要

Aquatic organism recognition is a core technology for fishing industry automation and aquatic organism statistical research. However, owing to absorption and scattering effects, images of aquatic organisms generally present poor contrast and color distortions, weakening the discriminative representations and decreasing the recognition accuracy. In this study, an inner feature and kernel calibration module is proposed for improving the recognition accuracy by aggregating informative features. Specifically, a set of features in one convolutional layer is split into two portions, each of which is fed to different flows. One flow contributes to emphasizing significant features, whereas the other is responsible for calibrating convolutional kernels. Consequently, the proposed module can effectively encode prominent features, and obtain dynamic convolutional kernels. Moreover, in view of a lack of aquatic organism examples, we collect 22,806 images of aquatic organisms and form a database for aquatic organism recognition containing 20 classes of common aquatic organisms. Finally, comprehensive experiments validate that the proposed module improves the performance of convolutional neural networks in a variety of recognition tasks, without any additional overhead. Specifically, the proposed module improves the top-1 accuracy to 95.7%, 97.1%, and 78.9% for the aquatic organism database and two public databases, respectively. Thus, this study could be beneficial for aquatic organism monitoring and automatic fishing, and can provide training data for other aquatic organism recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冷静无声发布了新的文献求助20
2秒前
CHH发布了新的文献求助10
2秒前
搜集达人应助yy采纳,获得10
2秒前
可爱的函函应助ggg采纳,获得10
3秒前
Yangfan发布了新的文献求助10
5秒前
鱼鱼完成签到,获得积分10
5秒前
虎虎虎完成签到,获得积分10
5秒前
xialuoke发布了新的文献求助10
7秒前
哇咔咔完成签到 ,获得积分10
8秒前
000完成签到 ,获得积分10
8秒前
AaronW应助homelo采纳,获得10
8秒前
沉默高跟鞋完成签到,获得积分10
8秒前
奎尼丁完成签到,获得积分20
10秒前
10秒前
gttlyb完成签到,获得积分10
10秒前
Vera123完成签到,获得积分10
11秒前
可爱的函函应助鱼鱼采纳,获得10
11秒前
11秒前
11秒前
无花果应助xialuoke采纳,获得10
12秒前
14秒前
14秒前
Liu发布了新的文献求助10
15秒前
15秒前
秦慧萍发布了新的文献求助10
17秒前
柔弱的尔白完成签到,获得积分10
17秒前
拾柒发布了新的文献求助10
17秒前
BQ应助冷静无声采纳,获得20
17秒前
黑包包大人完成签到,获得积分10
18秒前
orixero应助兴奋笑天采纳,获得10
18秒前
19秒前
裘山彤发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
秦慧萍完成签到,获得积分10
22秒前
kyoko886完成签到,获得积分10
22秒前
poab完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012