Aquatic organism recognition using residual network with inner feature and kernel calibration module

有机体 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 判别式 核(代数) 特征(语言学) 残余物 生物 数学 算法 语言学 组合数学 哲学 古生物学
作者
Chenggang Dai,Mingxing Lin,Zhiguang Guan,Yanjun Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:190: 106366-106366 被引量:2
标识
DOI:10.1016/j.compag.2021.106366
摘要

Aquatic organism recognition is a core technology for fishing industry automation and aquatic organism statistical research. However, owing to absorption and scattering effects, images of aquatic organisms generally present poor contrast and color distortions, weakening the discriminative representations and decreasing the recognition accuracy. In this study, an inner feature and kernel calibration module is proposed for improving the recognition accuracy by aggregating informative features. Specifically, a set of features in one convolutional layer is split into two portions, each of which is fed to different flows. One flow contributes to emphasizing significant features, whereas the other is responsible for calibrating convolutional kernels. Consequently, the proposed module can effectively encode prominent features, and obtain dynamic convolutional kernels. Moreover, in view of a lack of aquatic organism examples, we collect 22,806 images of aquatic organisms and form a database for aquatic organism recognition containing 20 classes of common aquatic organisms. Finally, comprehensive experiments validate that the proposed module improves the performance of convolutional neural networks in a variety of recognition tasks, without any additional overhead. Specifically, the proposed module improves the top-1 accuracy to 95.7%, 97.1%, and 78.9% for the aquatic organism database and two public databases, respectively. Thus, this study could be beneficial for aquatic organism monitoring and automatic fishing, and can provide training data for other aquatic organism recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘻嘻哈哈发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
谢志超完成签到,获得积分10
2秒前
ding应助裴向雪采纳,获得10
3秒前
liu发布了新的文献求助10
3秒前
3秒前
duoduo发布了新的文献求助10
6秒前
HYH发布了新的文献求助10
6秒前
6秒前
7秒前
LHT完成签到,获得积分10
8秒前
8秒前
8秒前
追寻夏烟完成签到 ,获得积分10
8秒前
samu发布了新的文献求助10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
冷静凡天应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Xiaoxiao应助科研通管家采纳,获得20
9秒前
高乘宽应助科研通管家采纳,获得10
9秒前
qq应助科研通管家采纳,获得10
9秒前
mlh479应助科研通管家采纳,获得10
10秒前
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
qq应助科研通管家采纳,获得10
10秒前
Dada应助科研通管家采纳,获得30
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
孩子气发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578