Early Prediction of Tacrolimus-Induced Tubular Toxicity in Pediatric Refractory Nephrotic Syndrome Using Machine Learning

肾毒性 医学 逻辑回归 随机森林 毒性 肾病综合征 机器学习 Boosting(机器学习) 内科学 决策树 泌尿科 计算机科学
作者
Xiaolan Mo,Xiujuan Chen,Chifong Ieong,Xia Gao,Yingjie Li,Xin Liao,Huabin Yang,Huiyi Li,Fan He,Yanling He,Yilu Chen,Huiying Liang,Min Huang,Jiali Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:12 被引量:9
标识
DOI:10.3389/fphar.2021.638724
摘要

Background and Aims: Tacrolimus(TAC)-induced nephrotoxicity, which has a large individual variation, may lead to treatment failure or even the end-stage renal disease. However, there is still a lack of effective models for the early prediction of TAC-induced nephrotoxicity, especially in nephrotic syndrome(NS). We aimed to develop and validate a predictive model of TAC-induced tubular toxicity in children with NS using machine learning based on comprehensive clinical and genetic variables. Materials and Methods: A retrospective cohort of 218 children with NS admitted between June 2013 and December 2018 was used to establish the models, and 11 children were prospectively enrolled for external validation. We screened 47 clinical features and 244 genetic variables. The changes in urine N- acetyl- β-D- glucosaminidase(NAG) levels before and after administration was used as an indicator of renal tubular toxicity. Results: Five machine learning algorithms, including extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), extremely random trees (ET), random forest (RF), and logistic regression (LR) were used for model generation and validation. Four genetic variables, including TRPC6 rs3824934_GG, HSD11B1 rs846910_AG, MAP2K6 rs17823202_GG, and SCARB2 rs6823680_CC were incorporated into the final model. The XGBoost model has the best performance: sensitivity 75%, specificity 77.8%, accuracy 77.3%, and AUC 78.9%. Conclusion: A pre-administration model with good performance for predicting TAC-induced nephrotoxicity in NS was developed and validated using machine learning based on genetic factors. Physicians can estimate the possibility of nephrotoxicity in NS patients using this simple and accurate model to optimize treatment regimen before administration or to intervene in time after administration to avoid kidney damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的山柳完成签到 ,获得积分10
3秒前
842782026发布了新的文献求助10
5秒前
吃不完的玉米完成签到,获得积分10
5秒前
隐形曼青应助小恐龙采纳,获得10
6秒前
7秒前
8秒前
8秒前
随手可发关注了科研通微信公众号
9秒前
9秒前
Z-先森完成签到,获得积分0
10秒前
10秒前
emberflow完成签到,获得积分10
12秒前
凯睿发布了新的文献求助10
12秒前
一一发布了新的文献求助10
13秒前
科研通AI5应助1234567890采纳,获得10
13秒前
14秒前
爆米花应助艾科研采纳,获得10
14秒前
难过衫完成签到,获得积分10
14秒前
aqione完成签到,获得积分10
14秒前
15秒前
搞怪珊完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
顾矜应助lp采纳,获得10
20秒前
小蘑菇应助tmxx采纳,获得10
20秒前
科目三应助孤巷的猫采纳,获得10
21秒前
小恐龙发布了新的文献求助10
22秒前
xuchao发布了新的文献求助10
23秒前
涛涛完成签到,获得积分10
23秒前
甜橙汁发布了新的文献求助10
25秒前
1231完成签到,获得积分10
25秒前
25秒前
希望天下0贩的0应助cz采纳,获得10
26秒前
脑洞疼应助林一木采纳,获得10
26秒前
29秒前
29秒前
SciGPT应助科研通管家采纳,获得30
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得30
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762