Ampere-hour-scale zinc–air pouch cells

电解质 阴极 储能 化学工程 小袋 材料科学 化学 电极 物理 工程类 热力学 医学 解剖 物理化学 功率(物理)
作者
S.S. Shinde,Jin Young Jung,Nayantara K. Wagh,Chi H. Lee,Dong‐Hyung Kim,Sung‐Hae Kim,Sang Uck Lee,Jung‐Ho Lee
出处
期刊:Nature Energy [Springer Nature]
卷期号:6 (6): 592-604 被引量:219
标识
DOI:10.1038/s41560-021-00807-8
摘要

All-solid-state zinc–air pouch cells promise high energy-to-cost ratios with inherent safety; however, finding earth-abundant high power/energy cathodes and super-ionic electrolytes remains a fundamental challenge. Here we present realistic zinc–air pouch cells designed by the (101)-facet copper phosphosulfide [CPS(101)] as a cathode as well as anti-freezing chitosan-biocellulosics as super-ionic conductor electrolytes. The proposed CPS(101) exhibits trifunctional activity and stability (>30,000 cycles) towards reversible oxygen reactions and hydrogen evolution reactions, outperforming commercial Pt/C and RuO2. Furthermore, hydroxide super-ion conductors utilizing polymerized chitosan-biocellulosics reveal exceptional conductivity (86.7 mS cm−1 at 25 °C) with high mechanical/chemical robustness. High cell-level energy densities of 460 Wh kgcell–1/1,389 Wh l−1 are normally measured in pouch cells (1 Ah) with a cycle lifespan of 6,000/1,100 cycles at 25 mA cm−2 for 20/70% depths of discharge, and the highest densities we could achieve were 523 Wh kgcell–1/1,609 Wh l−1. Flexible pouch cells operate well at rates of 5–200 mA cm−2 over a broad temperature range of −20 to 80 °C. Zinc–air batteries are viewed as a sustainable storage technology, but their commercialization requires a genuine performance leap forwards from the laboratory scale. Here the authors report a cell-level design and demonstrate an ampere-hour pouch cell with exceptionally high energy density and cycle lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的初蓝完成签到 ,获得积分10
刚刚
TiAmo发布了新的文献求助10
刚刚
刘十三完成签到,获得积分10
刚刚
刚刚
犹豫忆南完成签到,获得积分10
1秒前
科研通AI5应助kingwhitewing采纳,获得10
2秒前
2秒前
mm关注了科研通微信公众号
2秒前
xieyuanxing发布了新的文献求助10
2秒前
2秒前
左然然完成签到,获得积分10
2秒前
2秒前
人福药业完成签到,获得积分10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
细腻晓露发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
三里墩头应助科研通管家采纳,获得10
3秒前
天线宝宝应助科研通管家采纳,获得10
3秒前
wing00024完成签到,获得积分10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
控制小弟应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Leif应助科研通管家采纳,获得20
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740