Monitoring Anomalies in 3D Bioprinting with Deep Neural Networks

计算机科学 人工智能 过程(计算) 卷积神经网络 异常检测 深度学习 人工神经网络 可靠性(半导体) 计算机视觉 模式识别(心理学) 量子力学 操作系统 物理 功率(物理)
作者
Zeqing Jin,Zhizhou Zhang,Xianlin Shao,Grace X. Gu
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:9 (7): 3945-3952 被引量:53
标识
DOI:10.1021/acsbiomaterials.0c01761
摘要

Additive manufacturing technologies have progressed in the past decades, especially when used to print biofunctional structures such as scaffolds and vessels with living cells for tissue engineering applications. Part quality and reliability are essential to maintaining the biocompatibility and structural integrity needed for engineered tissue constructs. As a result, it is critical to detect for any anomalies that may occur in the 3D-bioprinting process that can cause a mismatch between the desired designs and printed shapes. However, challenges exist in detecting the imperfections within oftentimes transparent bioprinted and complex printing features accurately and efficiently. In this study, an anomaly detection system based on layer-by-layer sensor images and machine learning algorithms is developed to distinguish and classify imperfections for transparent hydrogel-based bioprinted materials. High anomaly detection accuracy is obtained by utilizing convolutional neural network methods as well as advanced image processing and augmentation techniques on extracted small image patches. Along with the prediction of various anomalies, the category of infill pattern and location information on the image patches can be accurately determined. It is envisioned that using our detection system to categorize and localize printing anomalies, real-time autonomous correction of process parameters can be realized to achieve high-quality tissue constructs in 3D-bioprinting processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
欣喜聪健发布了新的文献求助10
3秒前
balabala发布了新的文献求助10
3秒前
星辰大海应助DraGon采纳,获得10
3秒前
Akim应助轻松绿旋采纳,获得10
5秒前
6秒前
7秒前
欣喜聪健完成签到,获得积分10
8秒前
9秒前
思源应助落寞丹萱采纳,获得10
9秒前
CodeCraft应助kls采纳,获得10
9秒前
10秒前
等待发布了新的文献求助10
11秒前
东西南北发布了新的文献求助10
12秒前
西瓜投手完成签到,获得积分10
12秒前
16秒前
完美世界应助xgx984采纳,获得10
16秒前
16秒前
huamo发布了新的文献求助10
16秒前
柏忆南完成签到 ,获得积分10
17秒前
17秒前
18秒前
山猪吃细糠完成签到 ,获得积分10
19秒前
紫熊发布了新的文献求助10
20秒前
21秒前
LX完成签到,获得积分10
22秒前
呆萌冷玉发布了新的文献求助10
22秒前
kls发布了新的文献求助10
22秒前
EEBB完成签到,获得积分10
24秒前
阿秋发布了新的文献求助10
24秒前
传奇3应助EEBB采纳,获得10
28秒前
无花果应助wzy5508采纳,获得10
29秒前
30秒前
Dr.L发布了新的文献求助10
32秒前
孟德尔吃豌豆完成签到,获得积分10
33秒前
YZL完成签到,获得积分10
34秒前
777777发布了新的文献求助10
35秒前
kilig完成签到 ,获得积分10
36秒前
37秒前
脑洞疼应助顷刻采纳,获得10
38秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433751
求助须知:如何正确求助?哪些是违规求助? 3030966
关于积分的说明 8940334
捐赠科研通 2719011
什么是DOI,文献DOI怎么找? 1491613
科研通“疑难数据库(出版商)”最低求助积分说明 689331
邀请新用户注册赠送积分活动 685455