IFP-ADAC: A Two-stage Interpretable Fault Prediction Model for Multivariate Time Series

可解释性 异常检测 计算机科学 异常(物理) 多元统计 断层(地质) 时间序列 系列(地层学) 依赖关系(UML) 数据挖掘 变量(数学) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 物理 古生物学 地震学 凝聚态物理
作者
Weilin Wang,Zhaohui Peng,Senzhang Wang,Hao Li,Min Liu,Liang Xue,Nengwei Zhang
标识
DOI:10.1109/mdm52706.2021.00017
摘要

Fault prediction is critically important for many mobile equipments such as vehicles, ships and spacecrafts. Sensors deployed on these equipments continuously collect the status data, which are usually multivariate time series data. It is challenging to accurately predict the failure of the equipments based on the generated multivairate time series due to the complex correlations among the variables and the dynamic operation conditions. Though many methods have been proposed, they are not effective to provide an interpretable and accurate fault prediction result. This paper proposes a two-stage Interpretable Fault Prediction method based on Anomaly Detection and Anomaly Accumulation, called IFP-ADAC. Specially, we first design an anomaly detection module based on Generative Adversarial Nets due to the lack of samples. The generator captures the correlations among multiple variables and the temporal dependency within each variable jointly. Second, we design an anomaly accumulation model based on LSTM to capture the anomaly growth pattern, and the attention mechanism has been introduced to consider the severity of the detected anomalies. Compared with the end- to-end methods, our two-stage fault prediction method based on anomaly detection and accumulation has better interpretability. Extensive experiments conducted on two real-world datasets show the superior performance of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Xx采纳,获得10
1秒前
lu发布了新的文献求助10
2秒前
xl8530完成签到,获得积分10
2秒前
李健应助Yolo采纳,获得10
2秒前
完美世界应助清子采纳,获得10
2秒前
愿好发布了新的文献求助10
2秒前
3秒前
大个应助满眼月月采纳,获得10
3秒前
科研通AI6应助一见采纳,获得10
3秒前
3秒前
Rw发布了新的文献求助10
6秒前
天天快乐应助个性德天采纳,获得10
7秒前
7秒前
刘广清完成签到 ,获得积分10
7秒前
懒人发布了新的文献求助10
8秒前
李健的小迷弟应助大婷子采纳,获得10
8秒前
小鑫发布了新的文献求助10
9秒前
ZSW发布了新的文献求助10
9秒前
酷波er应助Adorey3016采纳,获得10
11秒前
11秒前
默默怜菡完成签到,获得积分10
13秒前
14秒前
初七123发布了新的文献求助10
14秒前
14秒前
FashionBoy应助pgg采纳,获得10
14秒前
15秒前
zcc完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
搞学术完成签到 ,获得积分10
15秒前
15秒前
方波溟完成签到,获得积分20
15秒前
16秒前
阿呆完成签到,获得积分10
16秒前
17秒前
17秒前
大意的傻春完成签到 ,获得积分10
17秒前
19秒前
且慢应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997