Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation

计算机科学 残余物 瓶颈 人工智能 目标检测 分割 模式识别(心理学) 数据挖掘 机器学习 算法 嵌入式系统
作者
Andrew Howard,Andrey Zhmoginov,Liang-Chieh Chen,Mark Sandler,Menglong Zhu
出处
期刊:Cornell University - arXiv 被引量:685
摘要

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu发布了新的文献求助30
刚刚
爆米花应助Sanche采纳,获得10
1秒前
丁真的草莓烟弹完成签到,获得积分10
2秒前
乔杰发布了新的文献求助10
2秒前
Yang发布了新的文献求助200
3秒前
5秒前
xingxingwang发布了新的文献求助10
5秒前
7秒前
Leo2025完成签到,获得积分10
7秒前
wanci应助nenoaowu采纳,获得10
8秒前
刘小刘认真读研完成签到,获得积分10
8秒前
9秒前
lkk发布了新的文献求助50
10秒前
微微发布了新的文献求助10
10秒前
13秒前
nenoaowu完成签到,获得积分10
14秒前
Sanche发布了新的文献求助10
14秒前
善学以致用应助junjie采纳,获得10
15秒前
缓慢的开山完成签到 ,获得积分10
15秒前
17秒前
秀丽黑裤完成签到,获得积分20
17秒前
能干砖家发布了新的文献求助10
17秒前
happyccch发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
RW乾完成签到,获得积分10
19秒前
善良青筠完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
MZ发布了新的文献求助10
22秒前
22秒前
秀丽黑裤发布了新的文献求助10
22秒前
RaynorHank发布了新的文献求助10
22秒前
23秒前
加贝火火完成签到 ,获得积分10
23秒前
乔杰完成签到,获得积分10
23秒前
ZZzz完成签到,获得积分10
25秒前
AGuang应助包容新蕾采纳,获得10
27秒前
phy发布了新的文献求助10
27秒前
tzb发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511