已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Offshore Platform Mooring Line Tensions Using Artificial Neural Network

系泊 海底管道 海洋工程 人工神经网络 直线(几何图形) 航程(航空) 工程类 计算机科学 模拟 人工智能 航空航天工程 几何学 数学 岩土工程
作者
Djoni E. Sidarta,Johyun Kyoung,Jim O’Sullivan,Kostas F. Lambrakos
标识
DOI:10.1115/omae2017-61942
摘要

Station-keeping is one of the important factors in the design of offshore platforms. Some offshore platforms, such as Spar, Semi-submersible and FPSO, use mooring lines as a mean for station-keeping. Tensions in the mooring lines are one of the key factors in station-keeping. The design of an offshore platform and its mooring lines is based on computed motions of the platform and associated mooring line tensions from numerical simulations using a software code on the basis of metocean criteria. This paper presents an Artificial Neural Network (ANN) model for the prediction of mooring line tensions based on the motions of the platform. This ANN model is trained with time histories of vessel motions and corresponding mooring line tensions for a range of sea states from the results of numerical simulations. After the model is trained, it can reproduce with great fidelity and very fast the mooring line tensions. In addition, it can generate accurate mooring line tensions for sea states that were not included in the training, and this demonstrates that the model has captured the knowledge for the underlying physics between vessel motions and mooring line tensions. The paper presents an example of the training and the validation of the model for a semi-submersible offshore platform for a range of sea states. The training of the ANN model employed a back-propagation learning algorithm. In this algorithm the computed output error is back-propagated through the neural network to modify the connection weights between neurons. The training started with a small number of hidden neurons, and the model grew adaptively by adding hidden neurons until either the target output convergence is achieved or a maximum number of additional hidden neurons is reached. The ANN model discovers nonlinear relationships between the input and output variables during training. The paper presents comparison of time series of mooring line tensions for sea states that were and were not included in the training between those from the numerical simulations and those computed by the trained ANN model. Fatigue assessment is also used to quantitatively measure the accuracy of the ANN model prediction of the time series of mooring line tensions. The paper presents the results of fatigue assessment using various stages of the ANN models with different number of hidden neurons. This shows that the additional hidden neurons improve the prediction of the ANN model of the mooring line tensions for sea states that were and were not included in the training. This approach of prediction of mooring line tensions based on vessel motions using ANN model paves the way to the development of an ANN-based monitoring system. Also, this ANN study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the dynamic behavior of floating systems and forecast problems before they occur by detecting deviations in historic patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助从容的慕山采纳,获得10
1秒前
2秒前
林lin发布了新的文献求助10
4秒前
如意黄豆发布了新的文献求助10
7秒前
美女完成签到 ,获得积分10
13秒前
adearfish完成签到 ,获得积分10
16秒前
SciGPT应助lzc采纳,获得10
16秒前
如意黄豆完成签到,获得积分20
21秒前
艺涵发布了新的文献求助50
21秒前
年年有余完成签到,获得积分10
23秒前
25秒前
26秒前
星辰大海应助TIGun采纳,获得10
32秒前
研友_VZG7GZ应助刻苦的采文采纳,获得10
32秒前
沉静海安完成签到 ,获得积分10
34秒前
Orange应助没有名称采纳,获得10
34秒前
淡然老头完成签到 ,获得积分10
38秒前
38秒前
eason完成签到,获得积分10
39秒前
王美美发布了新的文献求助10
40秒前
41秒前
41秒前
六七七应助庾稀采纳,获得20
42秒前
艺涵完成签到,获得积分10
42秒前
没有名称完成签到,获得积分10
42秒前
43秒前
eason发布了新的文献求助10
43秒前
tIng发布了新的文献求助10
44秒前
不安红豆完成签到,获得积分10
44秒前
44秒前
45秒前
没有名称发布了新的文献求助10
45秒前
miao完成签到 ,获得积分10
45秒前
Minerva发布了新的文献求助10
47秒前
48秒前
西瓜完成签到 ,获得积分10
50秒前
情怀应助没有名称采纳,获得10
50秒前
51秒前
123456完成签到,获得积分10
51秒前
坚定超短裙完成签到,获得积分20
52秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171318
求助须知:如何正确求助?哪些是违规求助? 2822293
关于积分的说明 7938582
捐赠科研通 2482767
什么是DOI,文献DOI怎么找? 1322767
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627