已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Offshore Platform Mooring Line Tensions Using Artificial Neural Network

系泊 海底管道 海洋工程 人工神经网络 直线(几何图形) 航程(航空) 工程类 计算机科学 模拟 人工智能 航空航天工程 几何学 数学 岩土工程
作者
Djoni E. Sidarta,Johyun Kyoung,Jim O’Sullivan,Kostas F. Lambrakos
标识
DOI:10.1115/omae2017-61942
摘要

Station-keeping is one of the important factors in the design of offshore platforms. Some offshore platforms, such as Spar, Semi-submersible and FPSO, use mooring lines as a mean for station-keeping. Tensions in the mooring lines are one of the key factors in station-keeping. The design of an offshore platform and its mooring lines is based on computed motions of the platform and associated mooring line tensions from numerical simulations using a software code on the basis of metocean criteria. This paper presents an Artificial Neural Network (ANN) model for the prediction of mooring line tensions based on the motions of the platform. This ANN model is trained with time histories of vessel motions and corresponding mooring line tensions for a range of sea states from the results of numerical simulations. After the model is trained, it can reproduce with great fidelity and very fast the mooring line tensions. In addition, it can generate accurate mooring line tensions for sea states that were not included in the training, and this demonstrates that the model has captured the knowledge for the underlying physics between vessel motions and mooring line tensions. The paper presents an example of the training and the validation of the model for a semi-submersible offshore platform for a range of sea states. The training of the ANN model employed a back-propagation learning algorithm. In this algorithm the computed output error is back-propagated through the neural network to modify the connection weights between neurons. The training started with a small number of hidden neurons, and the model grew adaptively by adding hidden neurons until either the target output convergence is achieved or a maximum number of additional hidden neurons is reached. The ANN model discovers nonlinear relationships between the input and output variables during training. The paper presents comparison of time series of mooring line tensions for sea states that were and were not included in the training between those from the numerical simulations and those computed by the trained ANN model. Fatigue assessment is also used to quantitatively measure the accuracy of the ANN model prediction of the time series of mooring line tensions. The paper presents the results of fatigue assessment using various stages of the ANN models with different number of hidden neurons. This shows that the additional hidden neurons improve the prediction of the ANN model of the mooring line tensions for sea states that were and were not included in the training. This approach of prediction of mooring line tensions based on vessel motions using ANN model paves the way to the development of an ANN-based monitoring system. Also, this ANN study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the dynamic behavior of floating systems and forecast problems before they occur by detecting deviations in historic patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wish完成签到,获得积分10
2秒前
uikymh完成签到 ,获得积分0
6秒前
adma发布了新的文献求助10
10秒前
罗小马完成签到,获得积分10
10秒前
nanfang完成签到 ,获得积分10
11秒前
卡诺斯明完成签到 ,获得积分10
13秒前
13秒前
王育泉完成签到,获得积分10
16秒前
ASZXDW发布了新的文献求助10
17秒前
766465完成签到 ,获得积分0
20秒前
甜甜纸飞机完成签到 ,获得积分10
20秒前
亭2007完成签到 ,获得积分10
20秒前
酷波er应助Edison采纳,获得10
23秒前
生姜批发刘哥完成签到 ,获得积分10
24秒前
王育泉发布了新的文献求助10
27秒前
27秒前
朝槿完成签到 ,获得积分10
28秒前
Qvby3完成签到 ,获得积分10
28秒前
星河梦枕完成签到,获得积分10
29秒前
JJun完成签到,获得积分10
30秒前
大吉完成签到 ,获得积分10
30秒前
realmar完成签到,获得积分10
31秒前
甜甜的紫菜完成签到 ,获得积分10
31秒前
科研通AI6应助小亿采纳,获得10
33秒前
小付发布了新的文献求助10
33秒前
暗号完成签到 ,获得积分10
35秒前
领导范儿应助科研通管家采纳,获得10
36秒前
米饭儿完成签到 ,获得积分10
37秒前
lishuai发布了新的文献求助10
41秒前
42秒前
李昕123完成签到 ,获得积分10
42秒前
42秒前
jinghong完成签到 ,获得积分10
46秒前
汉堡包应助wxj采纳,获得10
46秒前
小何0404发布了新的文献求助10
46秒前
呆萌大侠发布了新的文献求助10
48秒前
淡蓝时光关注了科研通微信公众号
50秒前
sniper111完成签到,获得积分0
53秒前
adma完成签到,获得积分10
56秒前
Fsy发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4982618
求助须知:如何正确求助?哪些是违规求助? 4234235
关于积分的说明 13188704
捐赠科研通 4026081
什么是DOI,文献DOI怎么找? 2202593
邀请新用户注册赠送积分活动 1214842
关于科研通互助平台的介绍 1131446