工作量
单调的工作
动物科学
运行经济
热应力
数学
医学
物理疗法
计时审判
志愿者
体重
心理学
内科学
最大VO2
计算机科学
心率
生物
生态学
操作系统
血压
作者
Robert W. Kenefick,Kristen R. Heavens,Adam J. Luippold,Nisha Charkoudian,Steven A. Schwartz,Samuel N. Cheuvront
出处
期刊:Medicine and Science in Sports and Exercise
[Ovid Technologies (Wolters Kluwer)]
日期:2017-08-02
卷期号:49 (12): 2570-2577
被引量:6
标识
DOI:10.1249/mss.0000000000001392
摘要
This study aimed to investigate the effect of increasing external loads on 5-km treadmill time trial (TT) performance in 20°C and 40°C environmental conditions and to construct an ecologically relevant performance prediction decision aid.Twenty-six male and four female volunteers (age, 23.5 ± 6.9 yr; weight, 76.0 ± 8.9 kg; height, 1.75 ± 0.07 m; V˙O2peak, 50.7 ± 4.5 mL·kg·min) participated in a counterbalanced, mixed-model design, with each subject assigned to a load group (20%, 30%, or 50% body mass (BM); n = 10 per group). Volunteers performed three, self-paced 5-km familiarization TT (treadmill) without external load. Each volunteer then performed a 5-km TT in each environment with loads of either 20% (n = 10), 30% (n = 10), or 50% (n = 10) of BM.1) Loads of (20%, 30%, and 50% of BM) impaired 5-km TT performance compared with that when unloaded (P < 0.05); 2) the time penalties of the 20% and 30% load were <50% load (P < 0.05); 3) in all trials, the addition of heat exposure reduced 5-km TT performance beyond the penalty of load itself (P < 0.05); and 4) the combination of heat and 50% load resulted in a substantial penalty such that continuous work was not sustainable for all of the volunteers.Relative to prediction models using fixed or constant workload exercise trials, an ecologically valid decision aid was developed from self-paced data, in which pace (km·h) can be predicted for individual levels of heat, load, or heat + load in combination.
科研通智能强力驱动
Strongly Powered by AbleSci AI