阳极
石墨烯
材料科学
钾离子电池
拉曼光谱
钾
石墨
掺杂剂
化学工程
纳米材料
兴奋剂
电化学
电池(电)
碳纤维
纳米技术
电极
锂(药物)
化学
磷酸钒锂电池
复合数
光电子学
复合材料
冶金
内分泌学
工程类
物理化学
功率(物理)
物理
光学
医学
量子力学
作者
Keith Share,Adam P. Cohn,Rachel Carter,Bridget R. Rogers,Cary L. Pint
出处
期刊:ACS Nano
[American Chemical Society]
日期:2016-10-09
卷期号:10 (10): 9738-9744
被引量:675
标识
DOI:10.1021/acsnano.6b05998
摘要
Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which also enables >6× increase in rate performance of doped vs undoped materials. Finally, in situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI