高光谱成像
发芽
支持向量机
主成分分析
人工智能
机器学习
播种
计算机科学
生物系统
数学
模式识别(心理学)
园艺
生物
作者
Baichuan Jin,Hengnian Qi,Liangquan Jia,Qizhe Tang,Lu Gao,Zhenan Li,Guangwu Zhao
标识
DOI:10.1016/j.infrared.2022.104097
摘要
Viability and vigor of rice seeds are related to the yield. The existing seed viability and vigor detection methods cannot meet the demand for precise planting, and a method that can quickly and non-destructively predict the vigor of rice seeds is needed. In this study, near-infrared hyperspectral imaging was used to determine the viability and vigor of naturally-aged rice seeds. Standard germination test was conducted to determine the reference values of the viability and vigor. Convolutional neural network (CNN) and conventional machine learning methods (support vector machine (SVM) and logistic regression (LR)) were built using full range spectra and characteristic wavelengths selected by principal component analysis (PCA) to predict the viability and vigor of different varieties of rice seeds under natural aging conditions. The overall results showed that deep learning methods and conventional machine learning methods could predict the viability and vigor of different varieties of rice seeds well, and the accuracy of most models was over 85%. Models using full spectra and the characteristic wavelengths showed close results. Models on all varieties performed closely to those on single variety. This study provided an effective method for fast, non-destructive and efficient prediction of rice seed viability and vigor.
科研通智能强力驱动
Strongly Powered by AbleSci AI