Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning

高光谱成像 发芽 支持向量机 主成分分析 人工智能 机器学习 播种 计算机科学 生物系统 数学 模式识别(心理学) 园艺 生物
作者
Baichuan Jin,Hengnian Qi,Liangquan Jia,Qizhe Tang,Lu Gao,Zhenan Li,Guangwu Zhao
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:122: 104097-104097 被引量:41
标识
DOI:10.1016/j.infrared.2022.104097
摘要

Viability and vigor of rice seeds are related to the yield. The existing seed viability and vigor detection methods cannot meet the demand for precise planting, and a method that can quickly and non-destructively predict the vigor of rice seeds is needed. In this study, near-infrared hyperspectral imaging was used to determine the viability and vigor of naturally-aged rice seeds. Standard germination test was conducted to determine the reference values of the viability and vigor. Convolutional neural network (CNN) and conventional machine learning methods (support vector machine (SVM) and logistic regression (LR)) were built using full range spectra and characteristic wavelengths selected by principal component analysis (PCA) to predict the viability and vigor of different varieties of rice seeds under natural aging conditions. The overall results showed that deep learning methods and conventional machine learning methods could predict the viability and vigor of different varieties of rice seeds well, and the accuracy of most models was over 85%. Models using full spectra and the characteristic wavelengths showed close results. Models on all varieties performed closely to those on single variety. This study provided an effective method for fast, non-destructive and efficient prediction of rice seed viability and vigor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chall应助学习采纳,获得10
刚刚
小兔叽完成签到 ,获得积分10
1秒前
1秒前
2秒前
小二发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
2秒前
3秒前
胡亚楠完成签到,获得积分10
4秒前
清蒸可达鸭完成签到,获得积分10
4秒前
Gauss应助YZY采纳,获得30
5秒前
牛哥发布了新的文献求助10
6秒前
拉手刹打方向完成签到,获得积分10
6秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
ZOE应助科研通管家采纳,获得50
8秒前
liuliu发布了新的文献求助10
8秒前
道衍先一完成签到,获得积分10
8秒前
思念发布了新的文献求助30
8秒前
Shu舒完成签到,获得积分10
9秒前
9秒前
jstagey完成签到,获得积分10
9秒前
纤指细轻捻完成签到 ,获得积分10
11秒前
michael发布了新的文献求助30
12秒前
牛哥完成签到,获得积分10
12秒前
yooo完成签到,获得积分20
13秒前
合适怡完成签到,获得积分10
14秒前
14秒前
烟花应助Zox采纳,获得10
14秒前
吴晨曦完成签到,获得积分10
14秒前
15秒前
如梦如画完成签到,获得积分10
15秒前
深情安青应助Robust采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370