Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning

高光谱成像 发芽 支持向量机 主成分分析 人工智能 机器学习 播种 计算机科学 生物系统 数学 模式识别(心理学) 园艺 生物
作者
Baichuan Jin,Hengnian Qi,Liangquan Jia,Qizhe Tang,Lu Gao,Zhenan Li,Guangwu Zhao
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:122: 104097-104097 被引量:41
标识
DOI:10.1016/j.infrared.2022.104097
摘要

Viability and vigor of rice seeds are related to the yield. The existing seed viability and vigor detection methods cannot meet the demand for precise planting, and a method that can quickly and non-destructively predict the vigor of rice seeds is needed. In this study, near-infrared hyperspectral imaging was used to determine the viability and vigor of naturally-aged rice seeds. Standard germination test was conducted to determine the reference values of the viability and vigor. Convolutional neural network (CNN) and conventional machine learning methods (support vector machine (SVM) and logistic regression (LR)) were built using full range spectra and characteristic wavelengths selected by principal component analysis (PCA) to predict the viability and vigor of different varieties of rice seeds under natural aging conditions. The overall results showed that deep learning methods and conventional machine learning methods could predict the viability and vigor of different varieties of rice seeds well, and the accuracy of most models was over 85%. Models using full spectra and the characteristic wavelengths showed close results. Models on all varieties performed closely to those on single variety. This study provided an effective method for fast, non-destructive and efficient prediction of rice seed viability and vigor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小星星完成签到,获得积分10
刚刚
啵乐乐发布了新的文献求助10
刚刚
爆米花应助瘦瘦白昼采纳,获得10
刚刚
wintercyan发布了新的文献求助20
刚刚
大雁高飞出不胜寒完成签到,获得积分10
1秒前
PSCs发布了新的文献求助10
1秒前
QWJ完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
zxy完成签到,获得积分10
3秒前
sober完成签到,获得积分10
3秒前
3秒前
mmknnk完成签到,获得积分20
3秒前
cc2064完成签到 ,获得积分10
3秒前
调皮冰旋发布了新的文献求助10
4秒前
西哈哈完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
Orange应助幸福胡萝卜采纳,获得10
4秒前
SHDeathlock完成签到,获得积分10
5秒前
习习发布了新的文献求助100
6秒前
Jolene66完成签到,获得积分10
6秒前
研友_8RlQ2n发布了新的文献求助10
6秒前
7秒前
852应助Pangsj采纳,获得10
7秒前
Song完成签到 ,获得积分10
7秒前
7秒前
8秒前
大胆夜绿发布了新的文献求助10
8秒前
Dr终年完成签到,获得积分10
8秒前
katharsis完成签到,获得积分10
8秒前
Ricardo发布了新的文献求助10
9秒前
歪歪象发布了新的文献求助10
9秒前
zeno123456完成签到,获得积分10
9秒前
陈某某发布了新的文献求助10
9秒前
10秒前
he完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678