An ensemble learning method based on deep neural network and group decision making

人工智能 人工神经网络 计算机科学 机器学习 特征(语言学) 操作员(生物学) 模式识别(心理学) 群(周期表) 班级(哲学) 数据挖掘 哲学 语言学 生物化学 化学 抑制因子 转录因子 基因 有机化学
作者
Xiaojun Zhou,Jingyi He,Chunhua Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:239: 107801-107801 被引量:24
标识
DOI:10.1016/j.knosys.2021.107801
摘要

Ensemble learning (EL) method which has high potential to improve the performance of single image classification model can be constructed in two steps: one is the generation of weak learners; the other is the combination of these learners. In this paper, an ensemble learning method based on deep neural network and group decision making (DNN-GDM-EL) is proposed, which uses deep neural networks (DNNs) to generate individual learners and exploits group decision making (GDM) to combine these learners. DNNs have demonstrated remarkable ability for image classification due to the powerful feature extraction ability. To ensure the diversity and accuracy, many different DNNs are used to generate individual learners. Furthermore, the individual learners are regarded as decision-makers (DMs), the categories are seen as alternatives, and the GDM aims to find an optimal alternative considering various suggestions of DMs. Specifically, a GDM model is established based on Bayesian theory which can reflect the complex relationship among the class of image, prior knowledge and output of DNN, and a GDM method based on TOPSIS is applied to solve this problem. Next, the index matrix consisted of DM's attributes is proposed, and an aggregation method based on 2-additive generalized Shapley AIVIFCA (2AGSAIVIFCA) operator is used to calculate the weights of DMs by fusing these matrixes. Further, state transition algorithm (STA) is applied to obtain the optimal weights of alternative's attributes. The effectiveness and superiority are verified in three public data sets and a real industrial problem by comparing DNN-GDM-EL method with other typical EL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
int0030完成签到,获得积分10
刚刚
云_123发布了新的文献求助10
1秒前
1秒前
1秒前
晚风摇曳完成签到,获得积分10
2秒前
风趣尔琴发布了新的文献求助30
2秒前
183发布了新的文献求助20
2秒前
852应助JT采纳,获得10
6秒前
6秒前
7777777发布了新的文献求助10
6秒前
Afen完成签到,获得积分20
7秒前
7秒前
wys完成签到,获得积分10
7秒前
8秒前
充电宝应助纪问安采纳,获得10
8秒前
9秒前
10秒前
windli发布了新的文献求助10
10秒前
10秒前
几酌应助景明采纳,获得10
11秒前
wanci应助zzz采纳,获得10
11秒前
认真的书桃完成签到,获得积分10
12秒前
12秒前
12秒前
脑洞疼应助wys采纳,获得10
12秒前
jiao发布了新的文献求助10
12秒前
能能完成签到,获得积分10
13秒前
闪闪发布了新的文献求助10
13秒前
来来完成签到,获得积分10
13秒前
14秒前
无私的珩发布了新的文献求助10
14秒前
lan完成签到,获得积分10
15秒前
15秒前
15秒前
李爱国应助飘逸的雪萍采纳,获得30
15秒前
15秒前
彭于晏应助黑色的白鲸采纳,获得10
15秒前
颛颛完成签到 ,获得积分10
15秒前
16秒前
遇见完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847