An ensemble learning method based on deep neural network and group decision making

人工智能 人工神经网络 计算机科学 机器学习 特征(语言学) 操作员(生物学) 模式识别(心理学) 群(周期表) 班级(哲学) 数据挖掘 哲学 基因 转录因子 抑制因子 有机化学 化学 生物化学 语言学
作者
Xiaojun Zhou,Jingyi He,Chunhua Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 107801-107801 被引量:24
标识
DOI:10.1016/j.knosys.2021.107801
摘要

Ensemble learning (EL) method which has high potential to improve the performance of single image classification model can be constructed in two steps: one is the generation of weak learners; the other is the combination of these learners. In this paper, an ensemble learning method based on deep neural network and group decision making (DNN-GDM-EL) is proposed, which uses deep neural networks (DNNs) to generate individual learners and exploits group decision making (GDM) to combine these learners. DNNs have demonstrated remarkable ability for image classification due to the powerful feature extraction ability. To ensure the diversity and accuracy, many different DNNs are used to generate individual learners. Furthermore, the individual learners are regarded as decision-makers (DMs), the categories are seen as alternatives, and the GDM aims to find an optimal alternative considering various suggestions of DMs. Specifically, a GDM model is established based on Bayesian theory which can reflect the complex relationship among the class of image, prior knowledge and output of DNN, and a GDM method based on TOPSIS is applied to solve this problem. Next, the index matrix consisted of DM's attributes is proposed, and an aggregation method based on 2-additive generalized Shapley AIVIFCA (2AGSAIVIFCA) operator is used to calculate the weights of DMs by fusing these matrixes. Further, state transition algorithm (STA) is applied to obtain the optimal weights of alternative's attributes. The effectiveness and superiority are verified in three public data sets and a real industrial problem by comparing DNN-GDM-EL method with other typical EL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuss完成签到,获得积分10
刚刚
善学以致用应助Ashley采纳,获得10
刚刚
大个应助练得身形似鹤形采纳,获得10
刚刚
1秒前
城南花已开完成签到,获得积分10
1秒前
小瓶子发布了新的文献求助10
2秒前
罗实发布了新的文献求助10
4秒前
4秒前
5秒前
叶赛文完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
9秒前
赘婿应助外向的曲奇采纳,获得10
9秒前
10秒前
10秒前
pasxc发布了新的文献求助10
11秒前
科研通AI6应助berrypeng采纳,获得10
12秒前
wujiming发布了新的文献求助20
14秒前
14秒前
JAN完成签到,获得积分10
16秒前
Persist发布了新的文献求助10
17秒前
应如是完成签到,获得积分10
18秒前
小柴发布了新的文献求助10
18秒前
高CA发布了新的文献求助10
20秒前
20秒前
莫小烦完成签到,获得积分10
20秒前
21秒前
顺利铃铛完成签到,获得积分10
22秒前
23秒前
24秒前
hygge完成签到,获得积分10
24秒前
问旋完成签到,获得积分10
24秒前
lllll发布了新的文献求助10
24秒前
25秒前
wujiming发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896830
求助须知:如何正确求助?哪些是违规求助? 4178283
关于积分的说明 12970555
捐赠科研通 3941641
什么是DOI,文献DOI怎么找? 2162319
邀请新用户注册赠送积分活动 1180861
关于科研通互助平台的介绍 1086400