An ensemble learning method based on deep neural network and group decision making

人工智能 人工神经网络 计算机科学 机器学习 特征(语言学) 操作员(生物学) 模式识别(心理学) 群(周期表) 班级(哲学) 数据挖掘 哲学 基因 转录因子 抑制因子 有机化学 化学 生物化学 语言学
作者
Xiaojun Zhou,Jingyi He,Chunhua Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 107801-107801 被引量:24
标识
DOI:10.1016/j.knosys.2021.107801
摘要

Ensemble learning (EL) method which has high potential to improve the performance of single image classification model can be constructed in two steps: one is the generation of weak learners; the other is the combination of these learners. In this paper, an ensemble learning method based on deep neural network and group decision making (DNN-GDM-EL) is proposed, which uses deep neural networks (DNNs) to generate individual learners and exploits group decision making (GDM) to combine these learners. DNNs have demonstrated remarkable ability for image classification due to the powerful feature extraction ability. To ensure the diversity and accuracy, many different DNNs are used to generate individual learners. Furthermore, the individual learners are regarded as decision-makers (DMs), the categories are seen as alternatives, and the GDM aims to find an optimal alternative considering various suggestions of DMs. Specifically, a GDM model is established based on Bayesian theory which can reflect the complex relationship among the class of image, prior knowledge and output of DNN, and a GDM method based on TOPSIS is applied to solve this problem. Next, the index matrix consisted of DM's attributes is proposed, and an aggregation method based on 2-additive generalized Shapley AIVIFCA (2AGSAIVIFCA) operator is used to calculate the weights of DMs by fusing these matrixes. Further, state transition algorithm (STA) is applied to obtain the optimal weights of alternative's attributes. The effectiveness and superiority are verified in three public data sets and a real industrial problem by comparing DNN-GDM-EL method with other typical EL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llllly发布了新的文献求助10
刚刚
勤恳化蛹完成签到 ,获得积分10
刚刚
young完成签到,获得积分10
刚刚
YifanWang应助谢朝邦采纳,获得10
刚刚
1秒前
yang完成签到,获得积分10
1秒前
1秒前
在水一方应助勤恳的豁采纳,获得10
1秒前
1秒前
1秒前
dellsni发布了新的文献求助10
1秒前
2秒前
儒雅寻菱完成签到,获得积分10
2秒前
hakunamatata完成签到 ,获得积分10
2秒前
kk发布了新的文献求助10
3秒前
sleeping完成签到 ,获得积分10
3秒前
3秒前
4秒前
st完成签到,获得积分20
4秒前
orixero应助害羞的夏旋采纳,获得10
4秒前
四然发布了新的文献求助10
4秒前
唐茜瑜发布了新的文献求助10
5秒前
Fischl完成签到 ,获得积分10
5秒前
vogo7发布了新的文献求助10
5秒前
井小浩完成签到,获得积分10
5秒前
fanconi完成签到 ,获得积分10
5秒前
小虫子发布了新的文献求助10
5秒前
背后梦安完成签到,获得积分10
5秒前
6秒前
认真以丹完成签到,获得积分10
6秒前
鲤跃发布了新的文献求助10
7秒前
i_jueloa完成签到,获得积分10
7秒前
7秒前
7秒前
SciGPT应助义气的嘉熙采纳,获得10
7秒前
鱼腩完成签到,获得积分10
8秒前
快乐二方完成签到 ,获得积分10
8秒前
好困发布了新的文献求助20
8秒前
asd发布了新的文献求助10
8秒前
seattle发布了新的文献求助10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406