A generalized machine learning-assisted phase-equilibrium calculation model for shale reservoirs

相(物质) 计算 储层模拟 油页岩 化学 理论(学习稳定性) 相平衡 碳氢化合物混合物 人工神经网络 航程(航空) 算法 计算机科学 石油工程 碳氢化合物 人工智能 机器学习 地质学 材料科学 古生物学 复合材料 有机化学
作者
Fangxuan Chen,Sheng Luo,Shihao Wang,Hadi Nasrabadi
出处
期刊:Fluid Phase Equilibria [Elsevier]
卷期号:558: 113423-113423 被引量:12
标识
DOI:10.1016/j.fluid.2022.113423
摘要

In compositional reservoir simulation, a significant portion of the CPU time is consumed in phase equilibrium calculations. Previous studies have incorporated the machine learning (ML) technique to accelerate and stabilize the phase equilibrium calculations. However, there are two main limitations: 1) previous work mainly focuses on conventional reservoirs, which cannot be extended to unconventional reservoirs; 2) previous studies are limited to fluid compositions with specific hydrocarbon components that narrows their application. In this paper, we propose a novel ML-assisted framework for phase equilibrium calculations in shale reservoirs. A general set of pseudo-components is considered to allow users to customize the composition of hydrocarbon mixtures. A pore size-dependent EOS is applied to simulate the fluid phase behavior in nano-scale conditions. In the stability test, the multilayer perceptron (MLP) is trained to predict the fluid phase state: single-phase or two-phase. For the fluid labeled as two-phase condition, the phase-split computation is performed to obtain the equilibrium ratio. Instead of using the initial estimate from the stability test, the MLP and the physics-informed neural network (PINN) are applied to obtain the initial estimates for the minimization program. The results show that, with the assistance of ML technique, we are able to reduce the computation time needed for the nano-scale phase equilibrium calculations by more than two orders of magnitude while maintaining 97% accuracy. Compared with MLP, PINN can accurately predict the equilibrium ratios with a limited range of input variables but require more training time. The progress of this study present a ML-assisted framework for phase equilibrium calculations and the generalized proxy phase-equilibrium calculator can be compiled into reservoir simulator to accelerate flash calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yj完成签到,获得积分10
刚刚
zzt完成签到,获得积分10
1秒前
1秒前
传奇3应助传统的盈采纳,获得10
1秒前
科研通AI2S应助Hong采纳,获得10
2秒前
一二完成签到,获得积分10
2秒前
2秒前
2秒前
单眼皮大女孩完成签到,获得积分10
3秒前
隐形曼青应助褚晣采纳,获得10
3秒前
4秒前
6秒前
星辰大海应助周欣采纳,获得10
6秒前
6秒前
lxl1996发布了新的文献求助10
7秒前
7秒前
wsh发布了新的文献求助10
8秒前
8秒前
dpp发布了新的文献求助10
8秒前
情怀应助KevenDing采纳,获得10
9秒前
Dudu完成签到 ,获得积分10
10秒前
Jasper应助鞘皮采纳,获得10
11秒前
Wang发布了新的文献求助10
11秒前
11秒前
772829完成签到 ,获得积分10
11秒前
111完成签到,获得积分10
12秒前
兰瓜瓜完成签到,获得积分20
13秒前
14秒前
zzer发布了新的文献求助10
15秒前
Lucas应助cloud采纳,获得10
15秒前
lebron应助为溪采纳,获得10
16秒前
布丁发布了新的文献求助10
16秒前
毛豆应助许中天采纳,获得10
16秒前
诗图关注了科研通微信公众号
17秒前
ct发布了新的文献求助10
17秒前
巧克力张张包完成签到,获得积分10
18秒前
小二郎应助积极的板栗采纳,获得10
19秒前
Owen应助积极的板栗采纳,获得10
19秒前
英俊的铭应助积极的板栗采纳,获得10
19秒前
无花果应助积极的板栗采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083