A generalized machine learning-assisted phase-equilibrium calculation model for shale reservoirs

相(物质) 计算 储层模拟 油页岩 化学 理论(学习稳定性) 相平衡 碳氢化合物混合物 人工神经网络 航程(航空) 算法 计算机科学 石油工程 碳氢化合物 人工智能 机器学习 地质学 材料科学 古生物学 复合材料 有机化学
作者
Fangxuan Chen,Sheng Luo,Shihao Wang,Hadi Nasrabadi
出处
期刊:Fluid Phase Equilibria [Elsevier BV]
卷期号:558: 113423-113423 被引量:15
标识
DOI:10.1016/j.fluid.2022.113423
摘要

In compositional reservoir simulation, a significant portion of the CPU time is consumed in phase equilibrium calculations. Previous studies have incorporated the machine learning (ML) technique to accelerate and stabilize the phase equilibrium calculations. However, there are two main limitations: 1) previous work mainly focuses on conventional reservoirs, which cannot be extended to unconventional reservoirs; 2) previous studies are limited to fluid compositions with specific hydrocarbon components that narrows their application. In this paper, we propose a novel ML-assisted framework for phase equilibrium calculations in shale reservoirs. A general set of pseudo-components is considered to allow users to customize the composition of hydrocarbon mixtures. A pore size-dependent EOS is applied to simulate the fluid phase behavior in nano-scale conditions. In the stability test, the multilayer perceptron (MLP) is trained to predict the fluid phase state: single-phase or two-phase. For the fluid labeled as two-phase condition, the phase-split computation is performed to obtain the equilibrium ratio. Instead of using the initial estimate from the stability test, the MLP and the physics-informed neural network (PINN) are applied to obtain the initial estimates for the minimization program. The results show that, with the assistance of ML technique, we are able to reduce the computation time needed for the nano-scale phase equilibrium calculations by more than two orders of magnitude while maintaining 97% accuracy. Compared with MLP, PINN can accurately predict the equilibrium ratios with a limited range of input variables but require more training time. The progress of this study present a ML-assisted framework for phase equilibrium calculations and the generalized proxy phase-equilibrium calculator can be compiled into reservoir simulator to accelerate flash calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wanci应助ZN采纳,获得10
1秒前
2秒前
2秒前
TobyGarfielD完成签到 ,获得积分10
4秒前
YifanWang应助永曼采纳,获得20
4秒前
华仔应助浅斟低唱采纳,获得10
4秒前
诗蕊完成签到 ,获得积分10
5秒前
5秒前
777发布了新的文献求助10
6秒前
流星雨发布了新的文献求助10
6秒前
默默地读文献应助高兴123采纳,获得10
7秒前
小蘑菇应助高兴123采纳,获得10
7秒前
852应助高兴123采纳,获得10
7秒前
爆米花应助高兴123采纳,获得10
7秒前
FashionBoy应助高兴123采纳,获得30
7秒前
taozi完成签到,获得积分0
7秒前
NN完成签到,获得积分10
8秒前
小乔发布了新的文献求助10
8秒前
橘子石榴完成签到,获得积分10
9秒前
栗子发布了新的文献求助10
11秒前
13秒前
hu完成签到,获得积分10
13秒前
协和_子鱼发布了新的文献求助10
18秒前
11111发布了新的文献求助30
19秒前
20秒前
宋阔发布了新的文献求助10
20秒前
20秒前
星海殇完成签到 ,获得积分0
21秒前
22秒前
鲸落完成签到 ,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
瘦瘦远山应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671865
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780495
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610296
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119