Artificial intelligence in glomerular diseases

医学 肾病科 肾脏疾病 疾病 回顾性队列研究 自然史 人工智能 临床实习 机器学习 病理 内科学 重症监护医学 计算机科学 物理疗法
作者
Francesco Paolo Schena,Riccardo Magistroni,Fedelucio Narducci,Daniela Isabel Abbrescia,Vito Walter Anelli,Tommaso Di Noia
出处
期刊:Pediatric Nephrology [Springer Nature]
卷期号:37 (11): 2533-2545 被引量:4
标识
DOI:10.1007/s00467-021-05419-8
摘要

In this narrative review, we focus on the application of artificial intelligence in the clinical history of patients with glomerular disease, digital pathology in kidney biopsy, renal ultrasonography imaging, and prediction of chronic kidney disease (CKD). With the development of natural language processing, the clinical history of a patient can be used to identify a computable phenotype. In kidney pathology, digital imaging has adopted innovative deep learning algorithms (DLAs) that can improve the predictive capability of the examined lesions. However, at this time, these applications can only be used in research because there is no recognized validation to replace the conventional diagnostic applications. Kidney ultrasonography, used in the clinical examination of patients, provides information about the progression of kidney damage. Machine learning algorithms (MLAs) with promising results for the early detection of CKD have been proposed, but, still, they are not solid enough to be incorporated into the clinical practice. A few tools for glomerulonephritis, based on MLAs, are available in clinical practice. They can be downloaded on computers and cellular phones but can only be applied to uniracial cohorts of patients. To improve their performance, it is necessary to organize large consortia with multiracial cohorts. Finally, in many studies MLA development has been carried out using retrospective cohorts. The performance of the models might differ in retrospective cohorts compared to real-world data. Therefore, the models should be validated in prospective external large cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
randylch完成签到,获得积分10
2秒前
2秒前
浅香千雪发布了新的文献求助10
2秒前
研友_VZG7GZ应助淡定小蜜蜂采纳,获得10
2秒前
沉默的钻石完成签到,获得积分10
3秒前
英俊的铭应助Diamond采纳,获得10
3秒前
渡边卯卯完成签到,获得积分10
3秒前
圣人海完成签到,获得积分10
3秒前
syx完成签到,获得积分10
3秒前
4秒前
lvzhigang完成签到 ,获得积分10
6秒前
沐沐完成签到 ,获得积分10
6秒前
薛定谔的谔完成签到,获得积分10
6秒前
要减肥的砖头完成签到,获得积分10
7秒前
lcsolar完成签到,获得积分10
7秒前
7秒前
huan完成签到,获得积分10
7秒前
Jackcaosky完成签到 ,获得积分10
7秒前
柠一完成签到 ,获得积分10
7秒前
动听的母鸡完成签到,获得积分10
8秒前
Www完成签到,获得积分20
8秒前
生动的电脑完成签到,获得积分10
9秒前
HhhhL完成签到 ,获得积分10
9秒前
居居应助oracl采纳,获得10
9秒前
mss12138完成签到,获得积分10
10秒前
李健应助老迟到的贝壳采纳,获得10
11秒前
ying完成签到,获得积分10
11秒前
12秒前
浅香千雪发布了新的文献求助10
12秒前
Jasper应助Www采纳,获得30
12秒前
13秒前
叶白山完成签到,获得积分10
13秒前
xelloss发布了新的文献求助10
13秒前
曾建完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757