已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying Tactics of Advanced Persistent Threats with Limited Attack Traces

计算机科学 计算机安全 妥协 班级(哲学) 图形 基线(sea) 人工智能 机器学习 理论计算机科学 社会科学 海洋学 社会学 地质学
作者
Khandakar Ashrafi Akbar,Yigong Wang,Md Shihabul Islam,Anoop Singhal,Latifur Khan,Bhavani Thuraisingham
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-25 被引量:4
标识
DOI:10.1007/978-3-030-92571-0_1
摘要

The cyberworld being threatened by continuous imposters needs the development of intelligent methods for identifying threats while keeping in mind all the constraints that can be encountered. Advanced Persistent Threats (APT) have become an important national issue as they secretly steal information over a long period of time. Depending on the objective, adversaries use different tactics throughout the APT campaign to compromise the systems. Therefore, this kind of attack needs immediate attention as such attack tactics are hard to detect for being interleaved with benign activities. Moreover, existing solutions to detect APT attacks are computationally expensive, since keeping track of every system behavior is both costly and challenging. In addition, because of the data imbalance issue that appears due to few malicious events compared to the innumerable benign events in the system, the performance of the existing detection models is affected. In this work, we propose novel machine learning (ML) approaches to classify such attack tactics. More specifically, we convert APT traces into a graph, generate nodes, and eventually graph embeddings, and classify using ML. For ML, we use proposed advanced approaches to address class imbalance issues and compare our approaches with other baseline models and show the effectiveness of our approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾克斯发布了新的文献求助10
刚刚
2秒前
tong发布了新的文献求助50
3秒前
自由的雁完成签到 ,获得积分10
5秒前
我是老大应助123456采纳,获得10
7秒前
7秒前
ding应助科研进化中采纳,获得10
9秒前
奋斗的雅柔完成签到,获得积分20
10秒前
10秒前
12秒前
桐桐应助贾克斯采纳,获得10
14秒前
思源应助牛牛眉目采纳,获得10
15秒前
yangyajie发布了新的文献求助10
15秒前
dsdsd发布了新的文献求助10
15秒前
16秒前
海贼学术完成签到 ,获得积分10
18秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
FIN应助科研通管家采纳,获得10
20秒前
FIN应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
俭朴的跳跳糖完成签到 ,获得积分10
20秒前
周美言发布了新的文献求助20
22秒前
干饭大王应助dsdsd采纳,获得10
23秒前
24秒前
27秒前
28秒前
李李李完成签到 ,获得积分10
28秒前
llll发布了新的文献求助10
28秒前
善学以致用应助galaxy采纳,获得30
32秒前
叶文轩发布了新的文献求助10
37秒前
yejian完成签到,获得积分10
39秒前
六初完成签到 ,获得积分10
40秒前
吉祥发布了新的文献求助30
41秒前
万能图书馆应助牛牛眉目采纳,获得10
45秒前
街道办事部完成签到,获得积分10
45秒前
岂曰无衣完成签到 ,获得积分10
50秒前
kiwi发布了新的文献求助10
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510727
关于积分的说明 11154880
捐赠科研通 3245180
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168