Identifying Tactics of Advanced Persistent Threats with Limited Attack Traces

计算机科学 计算机安全 妥协 班级(哲学) 图形 基线(sea) 人工智能 机器学习 理论计算机科学 社会科学 海洋学 地质学 社会学
作者
Khandakar Ashrafi Akbar,Yigong Wang,Md Shihabul Islam,Anoop Singhal,Latifur Khan,Bhavani Thuraisingham
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-25 被引量:4
标识
DOI:10.1007/978-3-030-92571-0_1
摘要

The cyberworld being threatened by continuous imposters needs the development of intelligent methods for identifying threats while keeping in mind all the constraints that can be encountered. Advanced Persistent Threats (APT) have become an important national issue as they secretly steal information over a long period of time. Depending on the objective, adversaries use different tactics throughout the APT campaign to compromise the systems. Therefore, this kind of attack needs immediate attention as such attack tactics are hard to detect for being interleaved with benign activities. Moreover, existing solutions to detect APT attacks are computationally expensive, since keeping track of every system behavior is both costly and challenging. In addition, because of the data imbalance issue that appears due to few malicious events compared to the innumerable benign events in the system, the performance of the existing detection models is affected. In this work, we propose novel machine learning (ML) approaches to classify such attack tactics. More specifically, we convert APT traces into a graph, generate nodes, and eventually graph embeddings, and classify using ML. For ML, we use proposed advanced approaches to address class imbalance issues and compare our approaches with other baseline models and show the effectiveness of our approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色的鱼发布了新的文献求助10
1秒前
风驻云停完成签到,获得积分10
1秒前
1秒前
Res_M完成签到,获得积分10
2秒前
迅速忆灵发布了新的文献求助10
2秒前
2秒前
润兴向禧发布了新的文献求助10
3秒前
3秒前
3秒前
今天真暖发布了新的文献求助10
4秒前
脑洞疼应助路飞采纳,获得10
4秒前
三口神奇完成签到,获得积分10
4秒前
4秒前
kokoko完成签到,获得积分10
5秒前
yuyy发布了新的文献求助10
5秒前
流星发布了新的文献求助10
6秒前
SYLH应助英俊鼠标采纳,获得10
7秒前
DW完成签到,获得积分10
8秒前
二玥发布了新的文献求助10
9秒前
菠萝菠萝哒应助anika采纳,获得10
10秒前
11秒前
soufal发布了新的文献求助10
12秒前
深情安青应助高兴的万宝路采纳,获得150
12秒前
盛夏如花发布了新的文献求助10
13秒前
14秒前
扶桑发布了新的文献求助10
15秒前
Hello应助今天真暖采纳,获得10
15秒前
科研通AI2S应助占那个采纳,获得20
15秒前
二玥完成签到,获得积分20
16秒前
润兴向禧完成签到,获得积分10
16秒前
ceeray23应助Joan7788采纳,获得10
18秒前
18秒前
20秒前
搜集达人应助li采纳,获得10
22秒前
22秒前
23秒前
yujie发布了新的文献求助30
23秒前
26秒前
26秒前
nuannuan应助占那个采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302