导线
电化学
锂(药物)
阴极
材料科学
离子
化学工程
电导率
导电体
离子电导率
离子键合
纳米技术
电极
化学
电解质
复合材料
物理化学
有机化学
医学
工程类
内分泌学
作者
Sungmin Na,Kwangjin Park
摘要
To enhance the conductivity of cathode materials, we propose a surface modification of Li1.03(Ni0.88Co0.08Mn0.04)O2 (NCM) cathode materials with a high ionic conductor (Li1.3Al0.3Ti1.7[PO4]3, LATP) and a high electronic conductor (multi-walled carbon nanotubes, MWCNTs). In this study, a lithium-ion conductor with a structure similar to NASICON was successfully synthesized via a modified Pechini method. For the surface modification, a prepared nanosized LATP and a commercial Ni-rich NCM (Ni ≥80%) were combined by grinding them together. LATP-coated Ni-rich NCM exhibits a high diffusion level (2.144 × 10−6 cm2∙s−1) in the voltage range of 2.8 to 4.35 V at 25°C owing to increased ionic conductivity. Subsequently, MWCNTs, which are electrically conducting, are coated onto the LATP-coated Ni-rich NCM via a wet process. The electrochemical performance of the MWCNT/LATP dual-coated Ni-rich NCM was evaluated at 25°C and 45°C. The results demonstrate that the dual-coated Ni-rich NCM cathode materials exhibit a high discharge capacity, adequate rate capability, and stable cycling performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI