Experimental study of sand production processes near an orifice

引用 科学网 工程类 图书馆学 地理 计算机科学 采矿工程 地质学 化学 生物化学 梅德林
作者
Kang Sub Yim,M. B. Dusseault,L. Zhang
标识
DOI:10.2523/28068-ms
摘要

Experimental study of sand production processes near an orifice K. Yim; K. Yim University of Waterloo, Ont., Canada Search for other works by this author on: This Site Google Scholar M. B. Dusseault; M. B. Dusseault University of Waterloo, Ont., Canada Search for other works by this author on: This Site Google Scholar L. Zhang L. Zhang University of Waterloo, Ont., Canada Search for other works by this author on: This Site Google Scholar Paper presented at the Rock Mechanics in Petroleum Engineering, Delft, Netherlands, August 1994. Paper Number: SPE-28068-MS https://doi.org/10.2118/28068-MS Published: August 29 1994 Cite View This Citation Add to Citation Manager Share Icon Share Twitter LinkedIn Get Permissions Search Site Citation Yim, K., Dusseault, M. B., and L. Zhang. "Experimental study of sand production processes near an orifice." Paper presented at the Rock Mechanics in Petroleum Engineering, Delft, Netherlands, August 1994. doi: https://doi.org/10.2118/28068-MS Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex Search nav search search input Search input auto suggest search filter All ContentAll ProceedingsSociety of Petroleum Engineers (SPE)SPE/ISRM Rock Mechanics in Petroleum Engineering Search Advanced Search AbstractAn experimental study was performed using Ottawa sand and a produced sand. A 3-D semi-analytical flow model was developed to analyze the experimental data. The results show that the ratio of sand grain size and outlet hole size, grain size distribution, and angularity are the most important factors affecting the sand arch stability. Pressure increase mode and pressure magnitude also affect arch stability.1. INTRODUCTIONWhen oil or gas is produced from poorly consolidated sediments, solids co-production often occurs. Solids co-production may cause equipment wear, waste disposal problems, and lead to safety reduction; thus, incentives exist to understand sand arch mechanics to help stop or control solids inflow. Sand arch stability studies date to Terzaghi, 1936, in his trap door experiment where he demonstrated stable arching. Hall and Harrisberger (1970) experimentally studied arches in relation to maximum sand-free production rates in oil wells. Stein et al. (1973, 1976) assumed the maximum flow rate an arch can withstand is proportional to the sand shear modulus. Studies were done at the Colorado School of Mines on arching and its relation to flow rate and confining stress level (Tippie et al., 1974). Tixier et al. (1973) approached sanding predictions using mechanical property log (acoustic log) interpretation.Bratli and Risnes (1981) did tests to study sand arch failure; they used pressurized air as the flowing medium in the laboratory. The relationship between flow rate and applied pressure from an external source was studied, and real cavities in several stages of the tests observed. Risnes et al. (1981) analyzed in situ data for sand production obtained from tests in a well in a poorly consolidated (uncemented?) sand. The well was heavily perforated with no special sand control measurements. Sand influx was measured by increasing the choke size stepwise, and recording the amount of sand produced.Dusseault and Santarelli (1989) developed conceptual models to describe sanding processes at microscopic, mesoscopic and macroscopic levels. Santarelli et al. (1990) used log and core analyses to predict sanding problems, achieving some success in materials which are lightly cemented.Many numerical and analytical sand production studies have been published; despite identification of some mechanisms, laboratory and parametric results, a full understanding of sand production is not yet available (Dusseault and Santarelli, 1989).Some experiments on arching were performed. During the tests, continuous cavity evolution from initiation to collapse was observed. Pressures in the specimens were measured at different flow rates, applied pressures, and outlet sizes. A 3-D pressure distribution model for steady-state flow in the specimen was developed and used to analyze pressure measurements. The relationships among sand arch stability and applied pressure, outlet size, and grain size of sand particles will be presented.2. EXPERIMENTAL APPARATUSThe test device is a Lucite cylinder pressure cell (Figure 1). At the top, there is a big hole to introduce sand and fluid, and a small hole for pressure. Applied pressure is monitored from a gauge between the cell and pressure supply. There are three pressure measurement tubes placed at points of interest in the cell through the top and connected to a pressure transducer. In the cell bottom, there are two outlets for outflow of fluid or slurry: one is at the centre, the other at one side. This latter hole allowed observation of processes of cavity formation and collapse. All tests reported are with the hole at the side because of the difficulty of operating with the centre hole, and the lack of a visual picture.P. 339 Keywords: hole size, sand control, sand production process, pressure drop, flow assurance, outflow, specimen, experimental study, outlet size, cavity Subjects: Flow Assurance, Formation Evaluation & Management, Solids (scale, sand, etc.), Sand Control This content is only available via PDF. 1994. Society of Petroleum Engineers You can access this article if you purchase or spend a download.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dimples发布了新的文献求助10
1秒前
慕青应助煜琪采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
2秒前
4秒前
默克完成签到,获得积分10
4秒前
5秒前
5秒前
跳跃忆南发布了新的文献求助10
6秒前
Stata@R发布了新的文献求助10
7秒前
NexusExplorer应助小丸子采纳,获得10
8秒前
修脚大师完成签到,获得积分10
8秒前
Dimples完成签到,获得积分10
8秒前
NexusExplorer应助偏执采纳,获得10
9秒前
10秒前
桐桐应助wang采纳,获得10
12秒前
修脚大师发布了新的文献求助20
13秒前
星辰大海应助Stata@R采纳,获得10
14秒前
yjw545433关注了科研通微信公众号
14秒前
15秒前
16秒前
16秒前
17秒前
18秒前
传奇3应助Xinxxx采纳,获得10
18秒前
涨水娃发布了新的文献求助10
20秒前
缚大哥发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
23秒前
复杂的懿轩完成签到,获得积分10
24秒前
26秒前
脑洞疼应助哈哈哈采纳,获得10
27秒前
铅笔完成签到,获得积分10
27秒前
27秒前
闪闪的映冬完成签到 ,获得积分10
27秒前
27秒前
yjw545433发布了新的文献求助10
27秒前
斯文绿凝完成签到,获得积分10
28秒前
29秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422380
求助须知:如何正确求助?哪些是违规求助? 3022679
关于积分的说明 8902215
捐赠科研通 2710096
什么是DOI,文献DOI怎么找? 1486318
科研通“疑难数据库(出版商)”最低求助积分说明 687010
邀请新用户注册赠送积分活动 682225