Long short-term memory suggests a model for predicting shale gas production

指数平滑 自回归积分移动平均 页岩气 生产(经济) 油页岩 平滑的 期限(时间) 计算机科学 自回归模型 石油工程 非常规油 指数函数 计量经济学 工程类 时间序列 机器学习 数学 经济 计算机视觉 宏观经济学 废物管理 数学分析 物理 量子力学
作者
Run Yang,Xiangui Liu,Rongze Yu,Zhiming Hu,Xianggang Duan
出处
期刊:Applied Energy [Elsevier]
卷期号:322: 119415-119415 被引量:40
标识
DOI:10.1016/j.apenergy.2022.119415
摘要

Predicting the production behaviors of shale gas wells is of great importance for further developing future unconventional hydrocarbon strategies. An accurate prediction production, as well as reliable shale gas production models, are required to fully understand the shale gas exploitation budget. However, a major problem with classical analytic methods is the insufficient accuracy of the existing models, the time-consuming collection of historical production data, and the costly computational expense. To minimize this problem, a combination of the exponential smoothing method, autoregressive integrated moving average (ARIMA) model, and long short-term memory (LSTM) model was proposed to provide robust support for the production behaviors of shale gas. In this paper, we employed shale gas well production data to establish a database for model training and optimized the predicted model. Hereby, we sought to evaluate the production data predicted by conventional analytical methods, the exponential smoothing method, the ARIMA model, and the LSTM model. Shortly afterward, we objectively compared the predicted results obtained by the novel LSTM model and traditional analytical methods, such as Arps, stretched exponential decline (SEPD), and the Duong model. Herein, we compared the computational cost between the LSTM model and traditional numerical simulation. The combined interpretation of the proposed model demonstrates that the LSTM model achieved scientific accuracy and outstanding results in both short-term and long-term predictions, and realized production prediction of the adjacent well, with excellent agreement with the real shale gas production and a low error, making it an effective tool in forecasting shale gas production. This assay could be used as a potential approach for evaluating deep learning in the petroleum industry and for predicting the future production of unconventional hydrocarbons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwwqt完成签到,获得积分10
刚刚
逃之姚姚完成签到 ,获得积分10
刚刚
几米发布了新的文献求助10
刚刚
1秒前
研友_LMgRkZ发布了新的文献求助10
2秒前
彭于晏应助泥花采纳,获得10
3秒前
3秒前
yyy发布了新的文献求助10
3秒前
enndyou发布了新的文献求助10
4秒前
4秒前
cwwqt发布了新的文献求助10
4秒前
caitlin发布了新的文献求助10
5秒前
科目三应助绿野金采纳,获得10
5秒前
Whim应助老唐采纳,获得10
5秒前
Hello应助Nana采纳,获得10
6秒前
科研通AI5应助Labor2025采纳,获得30
6秒前
所所应助CharlseFan采纳,获得10
7秒前
共享精神应助hl_sci采纳,获得10
7秒前
8秒前
pluto应助苹果雁易采纳,获得10
12秒前
小科完成签到,获得积分10
12秒前
13秒前
科研通AI5应助小宇子采纳,获得10
13秒前
zhl完成签到,获得积分10
14秒前
所所应助yuki采纳,获得20
14秒前
14秒前
一蓑烟雨任平生完成签到,获得积分10
15秒前
kingwill应助longtengfei采纳,获得20
15秒前
16秒前
深情安青应助不忘初心采纳,获得10
17秒前
王木木完成签到 ,获得积分10
17秒前
18秒前
BFQQQQ发布了新的文献求助10
19秒前
ww发布了新的文献求助30
19秒前
377发布了新的文献求助10
20秒前
zxsv完成签到,获得积分10
20秒前
20秒前
Tempo完成签到,获得积分10
21秒前
21秒前
科研通AI2S应助JLLi采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267