SOC estimation of Li-ion battery using convolutional neural network with U-Net architecture

均方误差 卷积神经网络 趋同(经济学) 算法 计算机科学 荷电状态 功能(生物学) 常量(计算机编程) 数学 电池(电) 统计 人工智能 进化生物学 生物 物理 量子力学 经济 功率(物理) 程序设计语言 经济增长
作者
Xinyuan Fan,Weige Zhang,Caiping Zhang,Anci Chen,Fulai An
出处
期刊:Energy [Elsevier BV]
卷期号:256: 124612-124612 被引量:79
标识
DOI:10.1016/j.energy.2022.124612
摘要

State-of-charge (SOC) is critical to the safe operation and energy management of electric vehicles. Data-driven SOC estimation algorithms all require a period of data to ensure convergence of the estimation results and cannot accurately estimate the SOC values near the starting point. We propose a SOC estimation method based on the U-Net architecture that can handle variable-length input data and output equal-length SOC estimation results, including accurate SOC of the starting point. Symmetric padding convolutional layer was proposed to address the boundary effect of Convolutional Neural Networks (CNN) and improve the accuracy of SOC estimation at the edges. We also propose a total variation loss function, which improves the stability of the estimation only by optimizing the loss function without increasing the model complexity, and significantly reduces the maximum error. The model was trained using dynamic drive cycle data at five constant temperatures, and the model has high accuracy at both constant and variable temperature conditions. The proposed method can estimate the SOC at constant temperatures with mean absolute error (MAE) within 1.1% and root-mean-square error (RMSE) within 1.4%. This method also can estimate SOC at varying temperatures with MAE within 1.5% and RMSE within 1.8% under different driving conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xwu发布了新的文献求助20
1秒前
1秒前
Liufgui应助Steven采纳,获得10
2秒前
3秒前
落寞凌波应助zzyyy采纳,获得10
4秒前
athruncx发布了新的文献求助10
5秒前
5秒前
6秒前
JIASHOUSHOU发布了新的文献求助10
7秒前
lucy完成签到,获得积分10
7秒前
呦呦鹿鸣完成签到,获得积分10
9秒前
落寞凌波应助七一琦采纳,获得30
11秒前
科研狗-加班族完成签到,获得积分10
12秒前
谢佳霖完成签到,获得积分20
12秒前
chen完成签到,获得积分10
12秒前
Akim应助Lesile采纳,获得10
13秒前
FashionBoy应助Steven采纳,获得10
14秒前
15秒前
赘婿应助科研小白菜采纳,获得10
17秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
Liufgui应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Newt应助科研通管家采纳,获得10
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
Newt应助科研通管家采纳,获得18
18秒前
18秒前
冷酷飞飞应助我们仨采纳,获得10
19秒前
bronze完成签到,获得积分10
19秒前
Sophist发布了新的文献求助10
21秒前
MXene完成签到,获得积分0
21秒前
GWZZ完成签到,获得积分10
21秒前
所所应助你吼采纳,获得10
22秒前
re发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075