A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs

嵌入 串联(数学) 计算机科学 链接(几何体) 节点(物理) 理论计算机科学 图嵌入 GSM演进的增强数据速率 二进制数 图形 数学 算法 人工智能 组合数学 算术 结构工程 工程类 计算机网络
作者
Zhixiao Wang,Yahui Chai,Chengcheng Sun,Xiaobin Rui,Hao Mi,Xinyu Zhang,Philip S. Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1037-1047 被引量:11
标识
DOI:10.1109/tcyb.2022.3181810
摘要

Link prediction is an important task in social network analysis and mining because of its various applications. A large number of link prediction methods have been proposed. Among them, the deep learning-based embedding methods exhibit excellent performance, which encodes each node and edge as an embedding vector, enabling easy integration with traditional machine learning algorithms. However, there still remain some unsolved problems for this kind of methods, especially in the steps of node embedding and edge embedding. First, they either share exactly the same weight among all neighbors or assign a completely different weight to each node to obtain the node embedding. Second, they can hardly keep the symmetry of edge embeddings obtained from node representations by direct concatenation or other binary operations such as averaging and Hadamard product. In order to solve these problems, we propose a weighted symmetric graph embedding approach for link prediction. In node embedding, the proposed approach aggregates neighbors in different orders with different aggregating weights. In edge embedding, the proposed approach bidirectionally concatenates node pairs both forwardly and backwardly to guarantee the symmetry of edge representations while preserving local structural information. The experimental results show that our proposed approach can better predict network links, outperforming the state-of-the-art methods. The appropriate aggregating weight assignment and the bidirectional concatenation enable us to learn more accurate and symmetric edge representations for link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
風來完成签到,获得积分10
刚刚
1秒前
cc发布了新的文献求助10
1秒前
tmpstlml完成签到,获得积分10
2秒前
2秒前
斯文败类应助墨菲采纳,获得10
3秒前
4秒前
Q。发布了新的文献求助10
4秒前
4秒前
marjorie完成签到 ,获得积分10
4秒前
hhhblabla应助我爱科研采纳,获得20
6秒前
7秒前
7秒前
在水一方应助云深不知妖采纳,获得10
9秒前
共享精神应助hexinyu采纳,获得10
9秒前
西决完成签到 ,获得积分10
10秒前
李健应助tmpstlml采纳,获得10
11秒前
科研通AI2S应助奶茶咖啡冻采纳,获得10
11秒前
sss发布了新的文献求助10
12秒前
Orange应助动人的采萱采纳,获得10
13秒前
13秒前
完美世界应助猴子好坏采纳,获得30
13秒前
Angie完成签到,获得积分10
14秒前
今夜无人入眠完成签到,获得积分20
15秒前
16秒前
16秒前
哲别发布了新的文献求助200
17秒前
wyff_ffff发布了新的文献求助10
19秒前
小乔发布了新的文献求助10
20秒前
淡然平蓝完成签到,获得积分10
20秒前
早坂爱完成签到,获得积分20
21秒前
科研通AI5应助cumt采纳,获得10
21秒前
zzz完成签到,获得积分10
21秒前
墨菲发布了新的文献求助10
22秒前
橘子气泡水完成签到 ,获得积分10
22秒前
无花果应助大力的汉堡采纳,获得10
22秒前
23秒前
赵德柱完成签到,获得积分10
23秒前
SciGPT应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672618
求助须知:如何正确求助?哪些是违规求助? 3228837
关于积分的说明 9782239
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610741
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198