A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs

嵌入 串联(数学) 计算机科学 链接(几何体) 节点(物理) 理论计算机科学 图嵌入 GSM演进的增强数据速率 二进制数 图形 数学 算法 人工智能 组合数学 算术 结构工程 工程类 计算机网络
作者
Zhixiao Wang,Yahui Chai,Chengcheng Sun,Xiaobin Rui,Hao‐Yang Mi,Xinyu Zhang,Philip S. Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:3
标识
DOI:10.1109/tcyb.2022.3181810
摘要

Link prediction is an important task in social network analysis and mining because of its various applications. A large number of link prediction methods have been proposed. Among them, the deep learning-based embedding methods exhibit excellent performance, which encodes each node and edge as an embedding vector, enabling easy integration with traditional machine learning algorithms. However, there still remain some unsolved problems for this kind of methods, especially in the steps of node embedding and edge embedding. First, they either share exactly the same weight among all neighbors or assign a completely different weight to each node to obtain the node embedding. Second, they can hardly keep the symmetry of edge embeddings obtained from node representations by direct concatenation or other binary operations such as averaging and Hadamard product. In order to solve these problems, we propose a weighted symmetric graph embedding approach for link prediction. In node embedding, the proposed approach aggregates neighbors in different orders with different aggregating weights. In edge embedding, the proposed approach bidirectionally concatenates node pairs both forwardly and backwardly to guarantee the symmetry of edge representations while preserving local structural information. The experimental results show that our proposed approach can better predict network links, outperforming the state-of-the-art methods. The appropriate aggregating weight assignment and the bidirectional concatenation enable us to learn more accurate and symmetric edge representations for link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨大强发布了新的文献求助10
1秒前
2秒前
小毛驴发布了新的文献求助10
4秒前
4秒前
健忘的剑发布了新的文献求助10
4秒前
5秒前
5秒前
英姑应助安古妮稀采纳,获得10
7秒前
吴丽萍完成签到,获得积分20
7秒前
汉堡包应助biancaliu采纳,获得10
8秒前
iNk应助百里一一采纳,获得10
8秒前
8秒前
8秒前
吴丽萍发布了新的文献求助10
10秒前
高高涵梅完成签到,获得积分10
10秒前
10秒前
苏苏诺诺2023完成签到,获得积分10
11秒前
开朗便当完成签到,获得积分10
11秒前
爆米花应助zzm采纳,获得10
12秒前
cc完成签到,获得积分10
12秒前
12秒前
Tantan发布了新的文献求助10
13秒前
Thea发布了新的文献求助10
14秒前
星辰大海应助无敌最俊朗采纳,获得10
15秒前
慕青应助琦琦采纳,获得10
15秒前
思源应助rose采纳,获得10
15秒前
Milesma发布了新的文献求助10
16秒前
wm给wm的求助进行了留言
16秒前
16秒前
16秒前
好好的i发布了新的文献求助10
16秒前
风中的宛白应助towanda采纳,获得10
17秒前
英姑应助义气幼珊采纳,获得10
17秒前
20秒前
aaa发布了新的文献求助10
20秒前
小二郎应助答辩采纳,获得10
20秒前
你小子完成签到,获得积分10
21秒前
orixero应助研友_LBorkn采纳,获得10
23秒前
科研路上互帮互助,共同进步完成签到,获得积分10
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870