Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches

平均绝对百分比误差 物理吸附 吸附 微型多孔材料 巴(单位) 人工神经网络 氮气 材料科学 生物系统 一般化 碳纤维 活性炭 体积热力学 计算机科学 化学 数学 算法 人工智能 复合数 热力学 物理 有机化学 气象学 数学分析 生物
作者
Mohammad Rahimi,Mohammad Hossein Abbaspour‐Fard,Abbas Rohani,Özge Yüksel Orhan,Xiang Li
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (30): 10670-10688 被引量:29
标识
DOI:10.1021/acs.iecr.2c01887
摘要

The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of <3.5%. RBF-NN estimates the CO2 capture with an R2 range of 0.97–0.99 of BACs as solid adsorbents. Also, the generalization assessment of RBF-NN observed errors, tolerating 0.5–6% of MAPE in 50–80% of total data sets. An alternative survey sensitivity analysis discloses the importance of multiple features such as specific surface area (SSA), micropore volume (%Vmic), average pore diameter (AVD), and nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional groups. A genetic algorithm (GA) optimized the physiochemical properties of N-doped ACs. It proposed the optimal CO2 capture with a value of 9.2 mmol g–1 at 1 bar and 273 K. The GA coupled with density functional theory (DFT) to optimize the geometries of exemplified BACs and adsorption energies with CO2 molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
4秒前
小马过河应助尼尼采纳,获得10
6秒前
6秒前
6秒前
吾将上下而求索完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助LIN采纳,获得10
7秒前
7秒前
7秒前
喜悦的半青完成签到,获得积分10
7秒前
8秒前
好宝宝发布了新的文献求助10
9秒前
上官若男应助程艳采纳,获得80
9秒前
伊可创发布了新的文献求助10
10秒前
Ava应助szh123采纳,获得10
11秒前
锦七发布了新的文献求助10
11秒前
小二郎应助收手吧大哥采纳,获得10
13秒前
14秒前
在水一方应助lm采纳,获得10
14秒前
可爱的函函应助jingjingA采纳,获得10
14秒前
Zdh同学完成签到,获得积分10
15秒前
我是老大应助淡然的铭采纳,获得10
16秒前
girl完成签到,获得积分10
17秒前
18秒前
华仔应助HAHAHA采纳,获得10
18秒前
18秒前
小坤同学发布了新的文献求助10
19秒前
20秒前
musejie应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
quhayley应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021