Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches

平均绝对百分比误差 物理吸附 吸附 微型多孔材料 巴(单位) 人工神经网络 氮气 材料科学 生物系统 一般化 碳纤维 活性炭 体积热力学 计算机科学 化学 数学 算法 人工智能 复合数 热力学 物理 有机化学 气象学 数学分析 生物
作者
Mohammad Rahimi,Mohammad Hossein Abbaspour‐Fard,Abbas Rohani,Özge Yüksel Orhan,Xiang Li
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (30): 10670-10688 被引量:29
标识
DOI:10.1021/acs.iecr.2c01887
摘要

The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of <3.5%. RBF-NN estimates the CO2 capture with an R2 range of 0.97–0.99 of BACs as solid adsorbents. Also, the generalization assessment of RBF-NN observed errors, tolerating 0.5–6% of MAPE in 50–80% of total data sets. An alternative survey sensitivity analysis discloses the importance of multiple features such as specific surface area (SSA), micropore volume (%Vmic), average pore diameter (AVD), and nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional groups. A genetic algorithm (GA) optimized the physiochemical properties of N-doped ACs. It proposed the optimal CO2 capture with a value of 9.2 mmol g–1 at 1 bar and 273 K. The GA coupled with density functional theory (DFT) to optimize the geometries of exemplified BACs and adsorption energies with CO2 molecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天份z发布了新的文献求助10
1秒前
浮游应助开心采纳,获得10
5秒前
大芳儿发布了新的文献求助10
6秒前
Xjx6519发布了新的文献求助10
6秒前
浮游应助明亮紫易采纳,获得10
6秒前
8秒前
Tcell完成签到,获得积分10
13秒前
胡图图发布了新的文献求助10
13秒前
无极微光应助科研通管家采纳,获得20
14秒前
pluto应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
玄风应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
张宇豪应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
玄风应助科研通管家采纳,获得10
15秒前
Verity应助科研通管家采纳,获得10
15秒前
厚朴应助开心采纳,获得10
16秒前
大龙哥886应助Xjx6519采纳,获得10
19秒前
在水一方应助zgsjymysmyy采纳,获得30
19秒前
echo发布了新的文献求助10
20秒前
20秒前
zhoumaoyuan发布了新的文献求助10
21秒前
天份z完成签到,获得积分10
21秒前
共享精神应助超越自我4641采纳,获得10
21秒前
27秒前
柳条儿发布了新的文献求助10
29秒前
30秒前
cx330完成签到 ,获得积分10
30秒前
优雅山柏发布了新的文献求助10
30秒前
anders完成签到 ,获得积分10
31秒前
冷艳的靳关注了科研通微信公众号
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566