Feature Ranking Importance from Multimodal Radiomic Texture Features using Machine Learning Paradigm: A Biomarker to Predict the Lung Cancer

人工智能 计算机科学 灰度级 支持向量机 接收机工作特性 模式识别(心理学) 肺癌 特征(语言学) 特征提取 排名(信息检索) 共现矩阵 机器学习 图像处理 图像纹理 图像(数学) 医学 病理 语言学 哲学
作者
Seong‐O Shim,Monagi H. Alkinani,Lal Hussain,Wajid Aziz
出处
期刊:Big Data Research [Elsevier]
卷期号:29: 100331-100331 被引量:5
标识
DOI:10.1016/j.bdr.2022.100331
摘要

The machine learning based techniques for detection of lungs cancer can assist the clinicians in assessing the risk of pulmonary nodules being malignant. We are developing non-invasive methods to accurately distinguish the non-small cell cancer carcinoma (NSCLC) from small cell cancer carcinoma (SCLC) brain metastases. In this study, we extracted multimodal radiomic features including texture and statistical Haralick texture, gray level co-occurrence matrix (GLCM) features, Gray level size-zone matrix (GLSZM) features, Gray-level run-length matrix (GLRLM) features. We also applied image enhancement contrast stretching and gamma correction to further improve the classification performance. We then ranked these features in order to investigate that which features category is more important to accurately distinguish the lung cancer subtypes. We employed robust machine learning techniques. We evaluated the performance based on top ranked 03 and 05 features and last ranked 05 and 02 features based on the receiver operating curve (ROC). The highest classification performance in terms of accuracy and AUC was obtained with all Haralick texture features using SVM polynomial with accuracy (99.89%) and AUC (0.9984). The classification performance with contrast stretching [0.02, 0.08; 0.05, 0.95] and gamma correction with gamma = 0.5 yielded highest accuracy of 100% and AUC of 1.00. The top three ranked features using image enhancement methods also yielded accuracy more than 95% which indicates that these top ranked features contributed higher in accuracy classifying the lung cancer subtypes. The results revealed that proposed model with multimodal features, image enhancement techniques and features ranking methods improved the classification performance which can be used for better diagnostic aid to improve the decision making to treat the patients suffering from SCLC and NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aizhujun发布了新的文献求助10
1秒前
Yoo.发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
CipherSage应助yu采纳,获得10
4秒前
Owen应助yzr01采纳,获得10
4秒前
4秒前
柯南完成签到,获得积分10
5秒前
香蕉觅云应助aizhujun采纳,获得10
5秒前
腼腆的立诚完成签到,获得积分10
6秒前
识途发布了新的文献求助10
6秒前
LH发布了新的文献求助10
8秒前
顾矜应助Yoo.采纳,获得10
8秒前
香蕉猴子啦啦啦完成签到,获得积分10
8秒前
川上富江发布了新的文献求助10
9秒前
Ava应助adw采纳,获得10
9秒前
9秒前
9秒前
chohsueh完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
LC发布了新的文献求助30
11秒前
romeo完成签到,获得积分10
12秒前
Jasper应助居居采纳,获得10
14秒前
15秒前
昔时旧日发布了新的文献求助10
15秒前
关我屁事发布了新的文献求助10
16秒前
17秒前
毛豆应助淡淡的凝冬采纳,获得10
17秒前
18秒前
adw完成签到,获得积分10
18秒前
Month完成签到,获得积分10
20秒前
21秒前
不二发布了新的文献求助10
21秒前
辞欢发布了新的文献求助10
22秒前
Month发布了新的文献求助10
23秒前
充电宝应助a'mao'men采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458562
求助须知:如何正确求助?哪些是违规求助? 3053394
关于积分的说明 9036264
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504448
科研通“疑难数据库(出版商)”最低求助积分说明 695292
邀请新用户注册赠送积分活动 694455