Traffic Flow Prediction Using Deep Learning Techniques

计算机科学 流量(计算机网络) 深度学习 智能交通系统 卷积神经网络 浮动车数据 人工神经网络 依赖关系(UML) 人工智能 自编码 数据挖掘 事件(粒子物理) 实时计算 机器学习 交通拥挤 运输工程 工程类 物理 量子力学 计算机安全
作者
Shubhashish Goswami,Abhimanyu Kumar
出处
期刊:Communications in computer and information science 卷期号:: 198-213 被引量:4
标识
DOI:10.1007/978-3-031-10551-7_15
摘要

In the "Intelligent Transportation System (ITS)", accurate and real-time traffic flow prediction is crucial, particularly for traffic control. To develop a smart city, data related to traffic flow is essential. Many Intelligent Transportation Systems now employ the ongoing technology to predict the traffic flow, reduce road accidents, and anticipate vehicle speed, and so on. However, the prediction that considers some other factors as environmental and weather conditions are considered to be more accurate. Predicting traffic flow is a fascinating research area. To forecast traffic, several different data mining approaches are used. Existing traffic flow forecast approaches are mostly based on shallow traffic prediction methods, which are insufficient for many real-world applications. Since traffic flow shows both spatial and temporal dependency features, as well as being affected by weather, social event data, and other factors, therefore, a new deep-learning-based traffic flow prediction technique such as "Stacked Auto-Encoder (SAE) Convolutional Neural Network (CNN), Long- and Short-Term Memory Neural Network (LSTM)" is proposed in this paper, which considers both "Spatial and Temporal Correlations". The results of the experiments showed the efficiency of suggested approach and compare its performance with several deep learning techniques on a real-world public dataset of Predicting in a complex traffic situation with its accuracy rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
coconut完成签到 ,获得积分10
1秒前
1秒前
脑洞疼应助Ll采纳,获得10
1秒前
1秒前
2秒前
Anne完成签到,获得积分10
2秒前
老迟到的凝丝完成签到,获得积分10
2秒前
金鸡奖发布了新的文献求助10
2秒前
邓邓邓妮妮子完成签到,获得积分10
2秒前
哇哈哈发布了新的文献求助10
2秒前
2秒前
andyxrz发布了新的文献求助30
3秒前
酒尚温完成签到,获得积分10
3秒前
3秒前
4秒前
Paul完成签到,获得积分10
4秒前
冰冰完成签到 ,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
5秒前
涛浪完成签到,获得积分10
5秒前
上官若男应助yzy采纳,获得10
6秒前
会飞的小白完成签到,获得积分10
6秒前
6秒前
8564523发布了新的文献求助10
6秒前
珈蓝完成签到,获得积分10
7秒前
吉祥完成签到,获得积分0
7秒前
7秒前
8秒前
开心尔云完成签到,获得积分10
8秒前
在水一方应助羽言采纳,获得10
8秒前
8秒前
HZW发布了新的文献求助20
9秒前
不厌关注了科研通微信公众号
9秒前
labxgr完成签到,获得积分10
9秒前
9秒前
9秒前
吱嗷赵完成签到,获得积分20
9秒前
MADKAI发布了新的文献求助20
10秒前
木木完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672