Identifying the spatial heterogeneity in the effects of the construction land scale on carbon emissions: Case study of the Yangtze River Economic Belt, China

温室气体 比例(比率) 环境科学 空间异质性 空间分布 土地利用 中国 空间生态学 人口 自然地理学 地理 环境资源管理 地图学 生态学 土木工程 工程类 考古 人口学 社会学 生物 遥感
作者
Min Wang,Yang Wang,Yingmei Wu,Xiaoli Yue,Mengjiao Wang,Pingping Hu
出处
期刊:Environmental Research [Elsevier]
卷期号:212: 113397-113397 被引量:58
标识
DOI:10.1016/j.envres.2022.113397
摘要

Low-carbon emissions are a major research focus to solve the problem of global warming and an important area that China needs to focus on to achieve high-quality development. Construction land scale is a non-negligible factor affecting carbon emissions. However, carbon emission impacts of county-scale spatial heterogeneity in construction land scale are under addressed in contemporary research. To address this gap, this paper took 1042 counties in China's Yangtze River Economic Belt (YREB) and developed datasets of the influencing factors including the construction land scale, GDP, secondary industry output proportion in GDP, residential population, and fixed asset investment. After comparing the ordinary least squares and geographically weighted regression (GWR) models, we applied GWR for more in-depth analyses. The global regression model results showed that the effect of the scale of construction land on carbon emissions was exceedingly significant and that the directions of the impacts coincided with the predictions. Further, local regression model results showed that construction land scale had significant spatial heterogeneity in the impact on carbon emissions and most counties (69.58%) showed significant positive correlations. The counties with significant construction land scale impacts on carbon emissions were concentrated and contiguous in spatial distribution and spatially clustered areas varied, with the clearest impact in the downstream region. The findings help to further identify the spatial heterogeneity of construction land scale impacts on carbon emissions, which provides evidence-based and theoretical support for policymakers to develop spatially differentiated emission reduction measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
隐形曼青应助烩面大师采纳,获得10
刚刚
刚刚
默然的歌完成签到 ,获得积分10
刚刚
CTL发布了新的文献求助10
1秒前
1秒前
1秒前
大鹏完成签到,获得积分10
1秒前
1秒前
1秒前
congguitar发布了新的文献求助10
2秒前
CodeCraft应助韭黄采纳,获得10
2秒前
2秒前
小月发布了新的文献求助10
2秒前
香蕉觅云应助学渣向下采纳,获得10
3秒前
3秒前
YML完成签到,获得积分10
4秒前
荣安安完成签到,获得积分10
4秒前
啦某某完成签到,获得积分10
4秒前
sunzhiyu233发布了新的文献求助10
5秒前
zhenzhen发布了新的文献求助10
5秒前
fang发布了新的文献求助10
5秒前
chengyulin完成签到 ,获得积分10
5秒前
孙二二发布了新的文献求助10
5秒前
小二郎应助SY采纳,获得10
6秒前
Akim应助顺心的惜蕊采纳,获得10
7秒前
7秒前
berry完成签到,获得积分20
8秒前
康小郁完成签到,获得积分10
8秒前
快乐友灵完成签到,获得积分10
8秒前
9秒前
群木成林完成签到,获得积分10
9秒前
小白一号完成签到 ,获得积分10
9秒前
Cynthia完成签到 ,获得积分10
9秒前
李惊鸿完成签到,获得积分10
9秒前
9秒前
9秒前
愤怒的子骞完成签到,获得积分10
10秒前
Emilia完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759