A high-performance neural network vehicle dynamics model for trajectory tracking control

卡西姆 控制理论(社会学) 弹道 前馈 车辆动力学 人工神经网络 计算机科学 非线性系统 跟踪(教育) 跟踪误差 控制工程 模拟 控制(管理) 工程类 人工智能 汽车工程 心理学 教育学 物理 量子力学 天文
作者
Peijun Fang,Yingfeng Cai,Long Chen,Hai Wang,Yicheng Li,Miguel Ángel Sotelo,Zhixiong Li
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:237 (7): 1695-1709 被引量:10
标识
DOI:10.1177/09544070221095660
摘要

Traditional models of vehicle dynamics engineered from physical principles are usually simplified and assumed, resulting in the model cannot accurately reflect the actual dynamic characteristics of the vehicle under some working conditions, affecting the control accuracy and even safety. In view of this, inspired by the single-track model, this paper uses the data-driven methods to establish a new high-performance time-delay feedback neural network vehicle dynamics model. The feedback connection of a network can describe complex dynamics. The multi-time-step input of the state and control can include highly nonlinear and strong coupling characteristics of a vehicle. The test results of modeling accuracy show that the proposed model can achieve higher vehicle dynamics prediction accuracy than nonlinear vehicle model. Different from the traditional vehicle dynamics model, the proposed model has long-term memory cells, which can implicitly predict coefficient of friction and can be applied to different road conditions. Then, the trajectory tracking control algorithm is designed based on the proposed vehicle model. According to the steady-state steering assumption, the feedforward front wheel steering angle is calculated, and the steady-state sideslip angle is integrated into the steering feedback according to the reference path to realize the reference trajectory tracking control. Finally, Simulink/CarSim is used to conduct the simulation analysis under the double lane change conditions to evaluate the proposed control algorithm. The analysis results show that the control algorithm based on the proposed model can achieve an accurate tracking control effect of a vehicle at medium and high speeds, providing high-accuracy track tracking and good lateral stability of intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助粥粥采纳,获得10
刚刚
苏若魔完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
傅家庆完成签到,获得积分10
3秒前
3秒前
5秒前
6秒前
wblr发布了新的文献求助10
6秒前
6秒前
huhu发布了新的文献求助10
6秒前
dwls完成签到,获得积分10
7秒前
金蚕完成签到,获得积分20
7秒前
小东完成签到 ,获得积分10
8秒前
8秒前
小蘑菇应助yangyangyang采纳,获得10
9秒前
丁一发布了新的文献求助10
9秒前
小俊发布了新的文献求助10
9秒前
姜汁发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
麻花儿发布了新的文献求助10
13秒前
14秒前
李健的小迷弟应助金蚕采纳,获得30
14秒前
14秒前
15秒前
科研通AI2S应助邵翎365采纳,获得10
15秒前
粥粥发布了新的文献求助10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
16秒前
甜甜玫瑰应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
orixero应助1huiqina采纳,获得10
16秒前
大阿仔发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323