A high-performance neural network vehicle dynamics model for trajectory tracking control

卡西姆 控制理论(社会学) 弹道 前馈 车辆动力学 人工神经网络 计算机科学 非线性系统 跟踪(教育) 跟踪误差 控制工程 模拟 控制(管理) 工程类 人工智能 汽车工程 教育学 物理 量子力学 心理学 天文
作者
Peijun Fang,Yingfeng Cai,Long Chen,Hai Wang,Yicheng Li,Miguel Ángel Sotelo,Zhixiong Li
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:237 (7): 1695-1709 被引量:17
标识
DOI:10.1177/09544070221095660
摘要

Traditional models of vehicle dynamics engineered from physical principles are usually simplified and assumed, resulting in the model cannot accurately reflect the actual dynamic characteristics of the vehicle under some working conditions, affecting the control accuracy and even safety. In view of this, inspired by the single-track model, this paper uses the data-driven methods to establish a new high-performance time-delay feedback neural network vehicle dynamics model. The feedback connection of a network can describe complex dynamics. The multi-time-step input of the state and control can include highly nonlinear and strong coupling characteristics of a vehicle. The test results of modeling accuracy show that the proposed model can achieve higher vehicle dynamics prediction accuracy than nonlinear vehicle model. Different from the traditional vehicle dynamics model, the proposed model has long-term memory cells, which can implicitly predict coefficient of friction and can be applied to different road conditions. Then, the trajectory tracking control algorithm is designed based on the proposed vehicle model. According to the steady-state steering assumption, the feedforward front wheel steering angle is calculated, and the steady-state sideslip angle is integrated into the steering feedback according to the reference path to realize the reference trajectory tracking control. Finally, Simulink/CarSim is used to conduct the simulation analysis under the double lane change conditions to evaluate the proposed control algorithm. The analysis results show that the control algorithm based on the proposed model can achieve an accurate tracking control effect of a vehicle at medium and high speeds, providing high-accuracy track tracking and good lateral stability of intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
群山完成签到 ,获得积分10
1秒前
痴情的小懒虫完成签到,获得积分20
1秒前
听寒完成签到,获得积分10
3秒前
hihi完成签到,获得积分10
3秒前
要开心完成签到 ,获得积分10
4秒前
酷炫醉山完成签到,获得积分10
5秒前
赘婿应助迷路哑铃采纳,获得10
8秒前
倾听阳光完成签到 ,获得积分10
9秒前
君君完成签到,获得积分10
9秒前
干净士晋完成签到 ,获得积分10
9秒前
Valrhona完成签到 ,获得积分10
10秒前
36456657完成签到,获得积分0
12秒前
李健的小迷弟应助黄垚采纳,获得10
12秒前
LIKUN完成签到,获得积分10
15秒前
无心的天真完成签到 ,获得积分10
16秒前
专炸油条完成签到 ,获得积分10
18秒前
外向的百川完成签到 ,获得积分10
19秒前
缥缈的冰旋完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
贼吖完成签到 ,获得积分10
23秒前
T_MC郭完成签到,获得积分10
24秒前
务实雁梅完成签到,获得积分10
25秒前
ED应助xiaobin采纳,获得10
25秒前
luoyukejing完成签到,获得积分10
27秒前
28秒前
找文献呢完成签到,获得积分10
30秒前
LIUJIE完成签到,获得积分10
31秒前
31秒前
时尚雨兰完成签到,获得积分10
32秒前
微雨若,,完成签到 ,获得积分10
33秒前
黄垚发布了新的文献求助10
33秒前
米博士完成签到,获得积分10
36秒前
迷路哑铃发布了新的文献求助10
36秒前
金枪鱼子发布了新的文献求助10
37秒前
dajiejie完成签到 ,获得积分10
37秒前
俏皮的老城完成签到 ,获得积分10
38秒前
43秒前
Jasper应助STP顶峰相见采纳,获得10
45秒前
Vesper完成签到 ,获得积分10
46秒前
52秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015