亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emma完成签到 ,获得积分10
刚刚
4秒前
QWQ发布了新的文献求助10
9秒前
妮娜发布了新的文献求助10
22秒前
27秒前
敏感紫烟发布了新的文献求助10
32秒前
34秒前
赘婿应助妮娜采纳,获得10
36秒前
36秒前
飞天大南瓜完成签到,获得积分10
53秒前
敏感紫烟完成签到,获得积分20
1分钟前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
1分钟前
wszl发布了新的文献求助10
1分钟前
1分钟前
惊鸿H完成签到 ,获得积分10
1分钟前
4114发布了新的文献求助10
1分钟前
打打应助liu采纳,获得10
1分钟前
简单的泥猴桃完成签到 ,获得积分10
1分钟前
活力棉花糖完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
幸运星完成签到 ,获得积分10
2分钟前
OKC完成签到,获得积分10
2分钟前
2分钟前
liu发布了新的文献求助10
2分钟前
xaopng完成签到,获得积分10
2分钟前
侯_完成签到 ,获得积分10
2分钟前
骨科小李完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jayzie完成签到 ,获得积分10
2分钟前
安详的从筠完成签到,获得积分10
3分钟前
liu完成签到,获得积分10
3分钟前
今后应助咕咚采纳,获得10
3分钟前
3分钟前
hh完成签到,获得积分10
3分钟前
熬夜波比应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助走冰莫吉托采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681498
求助须知:如何正确求助?哪些是违规求助? 5008323
关于积分的说明 15175619
捐赠科研通 4840998
什么是DOI,文献DOI怎么找? 2594768
邀请新用户注册赠送积分活动 1547797
关于科研通互助平台的介绍 1505803