Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程大程发布了新的文献求助10
刚刚
饿m完成签到 ,获得积分10
刚刚
刚刚
1秒前
喜之郎发布了新的文献求助10
1秒前
1秒前
Luantyi完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
4秒前
ldgsd完成签到,获得积分10
5秒前
香蕉觅云应助程大程采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
小王同学应助科研通管家采纳,获得20
7秒前
7秒前
大模型应助科研通管家采纳,获得30
7秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
小二郎应助CC采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
万能图书馆应助雨忆天下采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
madison完成签到,获得积分10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
wintel完成签到,获得积分10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303998
求助须知:如何正确求助?哪些是违规求助? 2938076
关于积分的说明 8486509
捐赠科研通 2612165
什么是DOI,文献DOI怎么找? 1426512
科研通“疑难数据库(出版商)”最低求助积分说明 662691
邀请新用户注册赠送积分活动 647276