Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助一一采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
yao完成签到,获得积分10
刚刚
郭德久完成签到 ,获得积分10
1秒前
gmc关闭了gmc文献求助
2秒前
2秒前
大模型应助yao采纳,获得10
4秒前
4秒前
4秒前
5秒前
bunny发布了新的文献求助10
5秒前
一只西瓜茶完成签到,获得积分20
5秒前
5秒前
共享精神应助修日天采纳,获得10
6秒前
orixero应助贪玩寄翠采纳,获得10
6秒前
刘佳完成签到 ,获得积分10
7秒前
7秒前
高贵振家发布了新的文献求助10
8秒前
8秒前
sciscisci发布了新的文献求助10
8秒前
EShan完成签到,获得积分10
8秒前
8秒前
zy完成签到,获得积分10
8秒前
香蕉觅云应助数值分析采纳,获得10
9秒前
9秒前
邱邱完成签到,获得积分10
10秒前
目眩完成签到,获得积分10
10秒前
10秒前
RNAPW发布了新的文献求助10
10秒前
roy完成签到,获得积分20
11秒前
Lorain发布了新的文献求助10
11秒前
教授王发布了新的文献求助10
11秒前
12秒前
13秒前
menghongmei发布了新的文献求助10
14秒前
14秒前
Grinde发布了新的文献求助10
14秒前
汉堡包应助gww采纳,获得10
15秒前
美丽萝莉完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058