Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
brk完成签到,获得积分10
刚刚
英姑应助典雅的友安采纳,获得10
1秒前
Sunny发布了新的文献求助30
1秒前
3秒前
威武从霜发布了新的文献求助10
3秒前
4秒前
情怀应助zzz采纳,获得10
4秒前
酷钱发布了新的文献求助10
5秒前
5秒前
笨笨的怜雪完成签到 ,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
香蕉觅云应助Aether采纳,获得10
8秒前
9秒前
脑洞疼应助sikaixue采纳,获得10
10秒前
11秒前
ZJHYNL发布了新的文献求助10
12秒前
有几颗荔枝关注了科研通微信公众号
12秒前
陈玺丞完成签到,获得积分10
12秒前
congdexxx发布了新的文献求助10
12秒前
本恩宁完成签到 ,获得积分10
13秒前
WXY发布了新的文献求助10
13秒前
14秒前
LHW完成签到,获得积分10
14秒前
14秒前
仲谋发布了新的文献求助10
18秒前
明亮的冷雪完成签到,获得积分10
18秒前
Gloyxtg发布了新的文献求助10
19秒前
Dudu完成签到,获得积分10
20秒前
21秒前
我不理解完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
耿昊发布了新的文献求助10
25秒前
顾矜应助小姜该看论文了采纳,获得10
25秒前
26秒前
自然莫英完成签到 ,获得积分10
27秒前
勤奋菠萝发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995