Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chrisio完成签到,获得积分10
1秒前
jason完成签到 ,获得积分10
2秒前
瘾迷者发布了新的文献求助10
2秒前
夏天特慢发布了新的文献求助10
2秒前
momo发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
戚小发布了新的文献求助30
5秒前
今后应助xing采纳,获得10
5秒前
星辰大海应助科研采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
共享精神应助李卓航采纳,获得10
6秒前
MO完成签到,获得积分10
7秒前
清欢发布了新的文献求助10
7秒前
心灵美平彤完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
学霸土豆发布了新的文献求助10
9秒前
悦耳的灵发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
共享精神应助YuLu采纳,获得10
14秒前
祖乐萱完成签到,获得积分10
15秒前
15秒前
雍雍发布了新的文献求助10
15秒前
16秒前
16秒前
努力努力完成签到,获得积分10
16秒前
16秒前
科研通AI6应助夏天特慢采纳,获得10
17秒前
jason0023发布了新的文献求助10
17秒前
17秒前
大模型应助怕黑剑封采纳,获得10
18秒前
李卓航发布了新的文献求助10
18秒前
取名叫做利完成签到,获得积分10
19秒前
kdjc完成签到 ,获得积分10
19秒前
传奇3应助尼古拉斯采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714