Leveraging Imitation Learning on Pose Regulation Problem of a Robotic Fish

计算机科学 人工智能 强化学习 马尔可夫决策过程 机器人 稳健性(进化) 模仿 任务(项目管理) 马尔可夫过程 工程类 心理学 统计 系统工程 化学 基因 社会心理学 生物化学 数学
作者
Tianhao Zhang,Yao Lu,Chen Wang,Jinan Sun,Shikun Zhang,Airong Wei,Guangming Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 4232-4245 被引量:5
标识
DOI:10.1109/tnnls.2022.3202075
摘要

In this article, the pose regulation control problem of a robotic fish is investigated by formulating it as a Markov decision process (MDP). Such a typical task that requires the robot to arrive at the desired position with the desired orientation remains a challenge, since two objectives (position and orientation) may be conflicted during optimization. To handle the challenge, we adopt the sparse reward scheme, i.e., the robot will be rewarded if and only if it completes the pose regulation task. Although deep reinforcement learning (DRL) can achieve such an MDP with sparse rewards, the absence of immediate reward hinders the robot from efficient learning. To this end, we propose a novel imitation learning (IL) method that learns DRL-based policies from demonstrations with inverse reward shaping to overcome the challenge raised by extremely sparse rewards. Moreover, we design a demonstrator to generate various trajectory demonstrations based on one simple example from a nonexpert helper, which greatly reduces the time consumption of collecting robot samples. The simulation results evaluate the effectiveness of our proposed demonstrator and the state-of-the-art (SOTA) performance of our proposed IL method. Furthermore, we deploy the trained IL policy on a physical robotic fish to perform pose regulation in a swimming tank without/with external disturbances. The experimental results verify the effectiveness and robustness of our proposed methods in real world. Therefore, we believe this article is a step forward in the field of biomimetic underwater robot learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的水蜜桃完成签到 ,获得积分10
刚刚
渔渔完成签到,获得积分10
刚刚
腼腆的赛君完成签到,获得积分10
刚刚
1秒前
CodeCraft应助2182265539采纳,获得10
1秒前
好晒发布了新的文献求助10
1秒前
甜甜的静柏完成签到 ,获得积分10
2秒前
3秒前
爱格儿发布了新的文献求助10
4秒前
heysiri完成签到,获得积分10
6秒前
科研通AI6.1应助渔渔采纳,获得10
6秒前
风趣的弘文完成签到,获得积分10
6秒前
明亮灭绝完成签到,获得积分10
7秒前
行走的猫完成签到 ,获得积分10
8秒前
活力棉花糖完成签到,获得积分10
8秒前
8秒前
学术牛马完成签到,获得积分10
9秒前
9秒前
曾舒欣关注了科研通微信公众号
10秒前
10秒前
华仔应助woodenfish采纳,获得10
10秒前
孙嘉畯完成签到 ,获得积分10
10秒前
11秒前
慕青应助Hearing胡采纳,获得10
11秒前
善学以致用应助jias采纳,获得10
11秒前
CodeCraft应助karma采纳,获得10
12秒前
优秀完成签到,获得积分20
13秒前
清爽的初柔完成签到,获得积分10
13秒前
14秒前
Joshua发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
得意黑完成签到,获得积分10
16秒前
包容友灵完成签到,获得积分10
18秒前
红萌馆管家完成签到,获得积分10
19秒前
科研通AI6.1应助陈龙采纳,获得10
19秒前
20秒前
太阳发布了新的文献求助10
21秒前
彭于晏应助Yidie采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709