药理学
药物输送
细胞凋亡
结直肠癌
癌症
生物利用度
癌症研究
化学
医学
生物化学
内科学
有机化学
作者
Jian Wang,Lun Zhang,Xidong Hui,Yufeng Guo,Baokang Zhu,Liqian Su,Shanshan Wang,Jiali Zeng,Qingru Chen,Rui Deng,Ziyan Wang,Jie Wang,Xiaobao Jin,Shuiqing Gui,Yi Xu,Xuemei Lu
标识
DOI:10.1016/j.actbio.2022.08.071
摘要
Oral colon-targeted drug delivery systems (OCDDs) are designed to deliver the therapeutic agents to colonic disease sites to improve the effectiveness of drug treatment, increase bioavailability, and reduce systemic side effects and are beneficial for the treatment of colorectal cancer (CRC) and inflammatory bowel disease (IBD). However, concerns about the biosafety of OCDDs are increasing, and changes in the physiological environment of the gastrointestinal tract can affect the therapeutic efficacy of the drug. Herein, we report about an orally administered colon-accumulating mitochondria-targeted drug delivery nanoplatform (M27-39@FA-MCNs), which was synthesized using the small peptide, M27-39, and folic acid (FA)-modified mesoporous carbon nanoparticles (FA-MCNs). The phenolic resin polymerized with phloroglucinol and formaldehyde (PF) was used for fabricating MCNs using a one-step soft-template method. Folic acid (FA) can be covalently combined with chitosan-modified MCNs to obtain FA-MCNs. The M27-39@FA-MCNs were stable with a spherical morphology and an average diameter of 129 nm. The cumulative release rate of M27-39@FA-MCNs in the artificial gastric fluid (pH = 1.2) and intestinal fluid (pH = 6.8) for 6 h was 87.77%. This nanoplatform maintains the advantages of both FA and MCNs to improve the bioactivity of M27-39 with high drug accumulation in colorectal tumor tissues and the ease of excretion, thus ameliorating its biosafety and targetability. Furthermore, M27-39@FA-MCNs induced tumor-cell apoptosis and inhibited tumor growth by disrupting mitochondrial energy metabolism and regulating the mitochondrial apoptosis signaling pathway and immune inflammatory response. Thus, such a mitochondria-targeting FA-modified nanoplatform based on mesoporous carbon and a bioactive peptide may provide a precise strategy for CRC treatment. STATEMENT OF SIGNIFICANCE: In this study, we constructed an orally administered colon-accumulating mitochondria-targeted drug delivery nanoplatform (M27-39@FA-MCNs), which was synthesized using the small peptide (M27-39) and folic acid-modified mesoporous carbon nanoparticles (FA-MCNs). M27-39@FA-MCNs increased the targeting ability of M27-39 toward mitochondria and colon based on the properties of FA-MCNs; they also increased M27-39 accumulation and residence time in colon tumors. Oral administration of M27-39@FA-MCNs remarkably alleviated colorectal cancer (CRC) by targeting tumor cell mitochondria and interfering with the mitochondrial energy metabolism process, and inducing apoptosis related P53/Caspase-3 mitochondrial pathway activation. Therefore, M27-39@FA-MCNs may provide a safe and precise therapeutic strategy for CRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI