Application of machine learning in predicting the risk of postpartum depression: A systematic review

萧条(经济学) 产后抑郁症 心理学 临床心理学 精神科 宏观经济学 经济 怀孕 遗传学 生物
作者
Minhui Zhong,Han Zhang,Chan Yu,Jinxia Jiang,Xia Duan
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:318: 364-379 被引量:22
标识
DOI:10.1016/j.jad.2022.08.070
摘要

Postpartum depression (PPD) presents a serious health problem among women and their families. Machine learning (ML) is a rapidly advancing field with increasing utility in predicting PPD risk. We aimed to synthesize and evaluate the quality of studies on application of ML techniques in predicting PPD risk. We conducted a systematic search of eight databases, identifying English and Chinese studies on ML techniques for predicting PPD risk and ML techniques with performance metrics. Quality of the studies involved was evaluated using the Prediction Model Risk of Bias Assessment Tool. Seventeen studies involving 62 prediction models were included. Supervised learning was the main ML technique employed and the common ML models were support vector machine, random forest and logistic regression. Five studies (30 %) reported both internal and external validation. Two studies involved model translation, but none were tested clinically. All studies showed a high risk of bias, and more than half showed high application risk. Including Chinese articles slightly reduced the reproducibility of the review. Model performance was not quantitatively analyzed owing to inconsistent metrics and the absence of methods for correlation meta-analysis. Researchers have paid more attention to model development than to validation, and few have focused on improvement and innovation. Models for predicting PPD risk continue to emerge. However, few have achieved the acceptable quality standards. Therefore, ML techniques for successfully predicting PPD risk are yet to be deployed in clinical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙玉杰发布了新的文献求助10
刚刚
1秒前
子然完成签到,获得积分10
1秒前
2秒前
Xj发布了新的文献求助10
3秒前
大脸怪发布了新的文献求助10
4秒前
小马甲应助hhh采纳,获得30
4秒前
852应助iceice采纳,获得150
5秒前
5秒前
茉莉是个饱饱完成签到,获得积分10
5秒前
李爱国应助fagfagsf采纳,获得10
5秒前
孟伽娜发布了新的文献求助10
6秒前
6秒前
6秒前
Liekkas发布了新的文献求助10
7秒前
7秒前
8秒前
露宝发布了新的文献求助10
8秒前
bofu发布了新的文献求助20
9秒前
欢喜念双发布了新的文献求助10
9秒前
漂亮的觅波完成签到,获得积分10
9秒前
细心蚂蚁发布了新的文献求助10
9秒前
科研通AI5应助淡淡红茶采纳,获得50
9秒前
9秒前
大模型应助孙玉杰采纳,获得10
10秒前
刘先生发布了新的文献求助10
10秒前
11秒前
anan完成签到,获得积分10
12秒前
12秒前
迷路易形发布了新的文献求助10
12秒前
了晨发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
Xj完成签到,获得积分20
15秒前
16秒前
bofu发布了新的文献求助10
16秒前
Skywalker发布了新的文献求助10
17秒前
科研通AI5应助细心蚂蚁采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581993
求助须知:如何正确求助?哪些是违规求助? 3151527
关于积分的说明 9488103
捐赠科研通 2853644
什么是DOI,文献DOI怎么找? 1568778
邀请新用户注册赠送积分活动 734779
科研通“疑难数据库(出版商)”最低求助积分说明 720809