Dual-stream Representation Fusion Learning for accurate medical image segmentation

计算机科学 分割 人工智能 计算机视觉 深度学习 图像分割 模式识别(心理学) 尺度空间分割 基于分割的对象分类
作者
Rongtao Xu,Changwei Wang,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106402-106402 被引量:10
标识
DOI:10.1016/j.engappai.2023.106402
摘要

Accurate segmenting regions of interest in various medical images are essential to clinical research and applications. Although deep learning-based methods have achieved good results, the fully automated segmentation results still need to be refined on the tininess, complexities, and irregularities of lesion shapes. To address this issue, we propose a Dual-stream Representation Fusion Learning (DRFL) paradigm for accurate clinical segmentation, including Dual-stream Fusion Module, Representation Fusion Transformer Module and Peakiness Fusion Attention Module. Specifically, Dual-stream Fusion Module can simultaneously generate binary masks and high-resolution images with segmentation stream and super-resolution stream that share a feature extractor, then both prediction outputs are merged as the input of Fusion Module to further improve the performance of the network for generating the final segmentation result; Representation Fusion Transformer Module is lightweight to fuse high-resolution representation and fine-grained structure representation; Peakiness Fusion Attention Module can capture more salient features while fusing more spatial information to improve the performance of the network. The effectiveness of our dual-stream representation fusion learning is validated on different medical image segmentation tasks, and extensive experiments show that our DRFL outperforms the state-of-the-art methods in segmentation quality of lung nodule segmentation, lung segmentation, cell contour segmentation, and prostate segmentation. Our code is available at https://github.com/Rongtao-Xu/RepresentationLearning/tree/main/DRFL-EAAI2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一直发布了新的文献求助10
5秒前
情怀应助月yue采纳,获得10
6秒前
WangT发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
2333完成签到,获得积分10
9秒前
胡霖完成签到,获得积分10
11秒前
顾矜应助ljx采纳,获得10
12秒前
N型半导体发布了新的文献求助10
12秒前
Yuki0616完成签到,获得积分10
13秒前
小鸭飞发布了新的文献求助10
13秒前
WangT完成签到,获得积分10
14秒前
领导范儿应助N型半导体采纳,获得10
16秒前
16秒前
16秒前
悟空发布了新的文献求助10
17秒前
嗯哼发布了新的文献求助10
18秒前
19秒前
月yue发布了新的文献求助10
19秒前
研友_Ze0vBn发布了新的文献求助10
22秒前
李健春完成签到 ,获得积分10
24秒前
脑洞疼应助一直采纳,获得10
24秒前
26秒前
26秒前
28秒前
DoLaso完成签到,获得积分10
28秒前
28秒前
mylaodao完成签到,获得积分0
29秒前
鱼雁发布了新的文献求助10
32秒前
ljx发布了新的文献求助10
32秒前
69关闭了69文献求助
32秒前
亮不卡发布了新的文献求助10
33秒前
麻辣鱼头发布了新的文献求助30
33秒前
嗯哼完成签到 ,获得积分10
33秒前
Wanfeng应助寂寞的灵安采纳,获得50
34秒前
37秒前
jingzhang完成签到 ,获得积分10
38秒前
39秒前
mob完成签到,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357