Dual-stream Representation Fusion Learning for accurate medical image segmentation

计算机科学 分割 人工智能 计算机视觉 深度学习 图像分割 模式识别(心理学) 尺度空间分割 基于分割的对象分类
作者
Rongtao Xu,Changwei Wang,Shibiao Xu,Weiliang Meng,Xiaopeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106402-106402 被引量:10
标识
DOI:10.1016/j.engappai.2023.106402
摘要

Accurate segmenting regions of interest in various medical images are essential to clinical research and applications. Although deep learning-based methods have achieved good results, the fully automated segmentation results still need to be refined on the tininess, complexities, and irregularities of lesion shapes. To address this issue, we propose a Dual-stream Representation Fusion Learning (DRFL) paradigm for accurate clinical segmentation, including Dual-stream Fusion Module, Representation Fusion Transformer Module and Peakiness Fusion Attention Module. Specifically, Dual-stream Fusion Module can simultaneously generate binary masks and high-resolution images with segmentation stream and super-resolution stream that share a feature extractor, then both prediction outputs are merged as the input of Fusion Module to further improve the performance of the network for generating the final segmentation result; Representation Fusion Transformer Module is lightweight to fuse high-resolution representation and fine-grained structure representation; Peakiness Fusion Attention Module can capture more salient features while fusing more spatial information to improve the performance of the network. The effectiveness of our dual-stream representation fusion learning is validated on different medical image segmentation tasks, and extensive experiments show that our DRFL outperforms the state-of-the-art methods in segmentation quality of lung nodule segmentation, lung segmentation, cell contour segmentation, and prostate segmentation. Our code is available at https://github.com/Rongtao-Xu/RepresentationLearning/tree/main/DRFL-EAAI2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yclbz发布了新的文献求助10
1秒前
1秒前
xl完成签到,获得积分10
2秒前
2秒前
lizi发布了新的文献求助10
2秒前
CodeCraft应助huzhennn采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
肆樂柒发布了新的文献求助30
5秒前
6秒前
高荣锴完成签到 ,获得积分10
6秒前
6秒前
牟泓宇完成签到 ,获得积分10
6秒前
星空发布了新的文献求助10
7秒前
潇洒荧荧发布了新的文献求助10
7秒前
7秒前
听风发布了新的文献求助10
8秒前
隐形曼青应助yclbz采纳,获得10
8秒前
一期一会发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
wada酱完成签到,获得积分10
11秒前
Ry0_发布了新的文献求助10
11秒前
12秒前
hd发布了新的文献求助10
12秒前
13秒前
13秒前
huzhennn发布了新的文献求助10
14秒前
一枝安发布了新的文献求助10
14秒前
愉快梦之发布了新的文献求助10
15秒前
15秒前
16秒前
如意完成签到,获得积分10
16秒前
思源应助淡然的蓝天采纳,获得10
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079