Information Fusion-Based Meta-Learning for Few-Shot Fault Diagnosis Under Different Working Conditions

计算机科学 人工智能 规范化(社会学) 残余物 嵌入 机器学习 一般化 断层(地质) 融合 模式识别(心理学) 代表(政治) 任务(项目管理) 学习迁移 数据挖掘 算法 工程类 数学 法学 系统工程 地震学 哲学 社会学 数学分析 地质学 政治 语言学 人类学 政治学
作者
Tian Xie,Xufeng Huang,Seung-Kyum Choi
标识
DOI:10.1115/detc2022-90934
摘要

Abstract With the development of deep learning and information technologies, intelligent fault diagnosis has been further developed, which achieves satisfactory identification of mechanical faults. However, the lack of labeled samples and complex working conditions can hinder the improvement of diagnostics models. In this article, a novel method called Information Fusion-based Meta-Learning (IFML) is explored for fault diagnosis with few-shot problems under different working conditions. Firstly, an information fusion and embedding module is applied to perform both data- and feature-level fusion of multi-source. The embedding module only contains one input layer and multiple convolutions, residual and batch normalization (BN) layers, which has the advantage of low computational cost and high generalization. Then the prototypical module is proposed to reduce the influence of domain-shift caused by different working conditions using the fusion representation, which can improve the performance of fault diagnosis. The approach is verified on artificial and real faults under 4 different working conditions from the KAt-DataCenter at Paderborn University. For the 3-way 1-shot classification on Task T1, the average testing accuracy of the proposed method is 97.14%. For the K-shot classification on different tasks, the proposed method achieves the highest average testing accuracy of 94.21%. The results show the proposed method outperforms other typical meta-learning methods in terms of testing accuracy and generalization capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenying完成签到 ,获得积分0
2秒前
3秒前
默问应助玄轩小悟风采纳,获得20
5秒前
谨慎的大门完成签到 ,获得积分10
5秒前
xiaoxixixier完成签到 ,获得积分10
5秒前
CMD完成签到 ,获得积分10
6秒前
生命科学的第一推动力完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
追逐梦想的打工人完成签到,获得积分10
10秒前
Dsunflower完成签到 ,获得积分10
11秒前
12秒前
白江虎完成签到,获得积分10
13秒前
无极微光应助白华苍松采纳,获得20
13秒前
槿一完成签到 ,获得积分10
14秒前
14秒前
lili完成签到,获得积分10
14秒前
hdc12138完成签到,获得积分10
16秒前
Legend发布了新的文献求助10
17秒前
枫叶完成签到,获得积分10
17秒前
荣荣完成签到,获得积分10
18秒前
Anna完成签到 ,获得积分10
18秒前
小事完成签到 ,获得积分10
18秒前
张三顺完成签到,获得积分10
18秒前
毕业就集采的苦命人完成签到 ,获得积分10
19秒前
缥缈的闭月完成签到,获得积分10
21秒前
瓦罐完成签到 ,获得积分10
21秒前
LiuZhaoYuan完成签到,获得积分10
22秒前
王kk完成签到 ,获得积分10
23秒前
握瑾怀瑜完成签到 ,获得积分0
25秒前
Jackcaosky完成签到 ,获得积分10
26秒前
栗子完成签到 ,获得积分10
28秒前
allover完成签到,获得积分10
29秒前
陈砍砍完成签到 ,获得积分10
31秒前
上官若男应助Legend采纳,获得10
32秒前
杨玲完成签到 ,获得积分10
37秒前
飞快的盼易完成签到,获得积分10
38秒前
高高珩完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
Amy完成签到 ,获得积分10
41秒前
chenyunxia完成签到,获得积分10
45秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771707
捐赠科研通 4615882
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590