生物
微生物群
计算生物学
成对比较
上位性
蛋白质-蛋白质相互作用
微生物种群生物学
进化生物学
生态学
遗传学
细菌
基因
计算机科学
人工智能
作者
Manon Morin,Anneliese J. Morrison,Michael J. Harms,Rachel J. Dutton
标识
DOI:10.1038/s41598-022-25303-1
摘要
Non-pairwise interactions, or higher-order interactions (HOIs), in microbial communities have been described as significant drivers of emergent features in microbiomes. Yet, the re-organization of microbial interactions between pairwise cultures and larger communities remains largely unexplored from a molecular perspective but is central to our understanding and further manipulation of microbial communities. Here, we used a bottom-up approach to investigate microbial interaction mechanisms from pairwise cultures up to 4-species communities from a simple microbiome (Hafnia alvei, Geotrichum candidum, Pencillium camemberti and Escherichia coli). Specifically, we characterized the interaction landscape for each species combination involving E. coli by identifying E. coli's interaction-associated mutants using an RB-TnSeq-based interaction assay. We observed a deep reorganization of the interaction-associated mutants, with very few 2-species interactions conserved all the way up to a 4-species community and the emergence of multiple HOIs. We further used a quantitative genetics strategy to decipher how 2-species interactions were quantitatively conserved in higher community compositions. Epistasis-based analysis revealed that, of the interactions that are conserved at all levels of complexity, 82% follow an additive pattern. Altogether, we demonstrate the complex architecture of microbial interactions even within a simple microbiome, and provide a mechanistic and molecular explanation of HOIs.
科研通智能强力驱动
Strongly Powered by AbleSci AI