纳米技术
蒸发
材料科学
小型化
微流控
分析物
纳米尺度
纳米颗粒
色谱法
化学
热力学
物理
作者
Long Jiao,Yixiao Wu,Yanjun Hu,Qianqian Guo,Huaping Wu,Huiyao Yu,Longqiang Deng,Dongliang Li,Lin Li
出处
期刊:Small
[Wiley]
日期:2023-01-08
卷期号:19 (14)
被引量:21
标识
DOI:10.1002/smll.202206274
摘要
Precise detection involving droplets based on functional surfaces is promising for the parallelization and miniaturization of platforms and is significant in epidemic investigation, analyte recognition, environmental simulation, combinatorial chemistry, etc. However, a challenging and considerable task is obtaining mutually independent droplet arrays without cross-contamination and simultaneously avoiding droplet evaporation-caused quick reagent loss, inaccuracy, and failure. Herein, a strategy to generate mutually independent and hardly-volatile capsular droplet arrays using innovative mosaic patterned surfaces is developed. The evaporation suppression of the capsular droplet arrays is 1712 times higher than the naked droplet. The high evaporation suppression of the capsular droplet arrays on the surfaces is attributed to synergistic blocking of the upper oil and bottom mosaic gasproof layer. The scale-up of the capsular droplet arrays, the flexibility in shape, size, component (including aqueous, colloidal, acid, and alkali solutions), liquid volume, and the high-precision hazardous substance testing proves the concept's high compatibility and practicability. The mutually independent capsular droplet arrays with amazingly high evaporation suppression are essential for the new generation of high-performance open-surface microfluidic chips used in COVID-19 diagnosis and investigation, primary screening, in vitro enzyme reactions, environmental monitoring, nanomaterial synthesis, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI