SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning

马修斯相关系数 遗传程序设计 试验装置 人工智能 集成学习 蛋白质测序 计算机科学 计算生物学 机器学习 随机森林 基因表达程序设计 肽序列 支持向量机 基因 化学 生物 生物化学
作者
Shima Shafiee,Abdolhossein Fathi,Ghazaleh Taherzadeh
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2029-2040 被引量:4
标识
DOI:10.1109/tcbb.2022.3230540
摘要

Peptide-binding proteins play significant roles in various applications such as gene expression, metabolism, signal transmission, DNA (Deoxyribose Nucleic Acid) repair, and replication. Investigating the binding residues in protein-peptide complexes, especially from their sequence only, is challenging experimentally and computationally. Although several computational approaches have been introduced to determine and predict these binding residues, there is still ample room to improve the prediction performance. In this work, we introduce a novel ensemble machine learning-based approach called SPPPred (Sequence-based Protein-Peptide binding residue Prediction) to predict protein-peptide binding residues. First, we extract relevant sequential information and employ genetic programming algorithm for feature construction to find more distinctive features. We then, in the next step, build an ensemble-based machine learning classifier to predict binding residues. The proposed method shows consistent and comparable performance on both ten-fold cross-validation and independent test set. Furthermore, SPPPred yields F-Measure (F-M), Accuracy(ACC), and Matthews’ Correlation Coefficient (MCC) of 0.310, 0.949, and 0.230 on the independent test set, respectively, which outperforms other competing methods by approximately up to 9% on the independent test set. SPPPred is publicly available https://github.com/GTaherzadeh/SPPPred.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qingcyx完成签到,获得积分10
1秒前
大模型应助典雅的迎波采纳,获得10
1秒前
Zirong发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
优雅狗发布了新的文献求助10
2秒前
Hmzek完成签到,获得积分10
2秒前
NING完成签到 ,获得积分10
3秒前
传奇3应助zddhhh采纳,获得10
4秒前
5秒前
CodeCraft应助tangz采纳,获得10
8秒前
Clarence发布了新的文献求助10
11秒前
优雅狗完成签到,获得积分10
12秒前
老班长发布了新的文献求助10
12秒前
老实的寒安完成签到,获得积分10
16秒前
认真的代柔完成签到,获得积分10
17秒前
海晨完成签到,获得积分10
17秒前
17秒前
万能图书馆应助温婉采纳,获得10
19秒前
口十木又寸完成签到,获得积分20
19秒前
索浩鑫关注了科研通微信公众号
20秒前
clock完成签到 ,获得积分10
20秒前
20秒前
Elaine发布了新的文献求助10
20秒前
22秒前
22秒前
百无禁忌完成签到,获得积分10
23秒前
25秒前
25秒前
宁ning完成签到 ,获得积分20
27秒前
Wjc发布了新的文献求助10
27秒前
27秒前
聪慧芷巧发布了新的文献求助10
28秒前
keen完成签到 ,获得积分10
30秒前
丘比特应助YH采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
积极的越泽完成签到,获得积分10
32秒前
起司嗯发布了新的文献求助10
32秒前
七月流火应助JUNJUN采纳,获得100
33秒前
slin_sjtu完成签到,获得积分10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150