SPPPred: Sequence-Based Protein-Peptide Binding Residue Prediction Using Genetic Programming and Ensemble Learning

马修斯相关系数 遗传程序设计 试验装置 人工智能 集成学习 蛋白质测序 计算机科学 计算生物学 机器学习 随机森林 基因表达程序设计 肽序列 支持向量机 基因 化学 生物 生物化学
作者
Shima Shafiee,Abdolhossein Fathi,Ghazaleh Taherzadeh
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2029-2040 被引量:10
标识
DOI:10.1109/tcbb.2022.3230540
摘要

Peptide-binding proteins play significant roles in various applications such as gene expression, metabolism, signal transmission, DNA (Deoxyribose Nucleic Acid) repair, and replication. Investigating the binding residues in protein-peptide complexes, especially from their sequence only, is challenging experimentally and computationally. Although several computational approaches have been introduced to determine and predict these binding residues, there is still ample room to improve the prediction performance. In this work, we introduce a novel ensemble machine learning-based approach called SPPPred (Sequence-based Protein-Peptide binding residue Prediction) to predict protein-peptide binding residues. First, we extract relevant sequential information and employ genetic programming algorithm for feature construction to find more distinctive features. We then, in the next step, build an ensemble-based machine learning classifier to predict binding residues. The proposed method shows consistent and comparable performance on both ten-fold cross-validation and independent test set. Furthermore, SPPPred yields F-Measure (F-M), Accuracy(ACC), and Matthews' Correlation Coefficient (MCC) of 0.310, 0.949, and 0.230 on the independent test set, respectively, which outperforms other competing methods by approximately up to 9% on the independent test set. SPPPred is publicly available https://github.com/GTaherzadeh/SPPPred.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yclbz采纳,获得10
刚刚
一期一会发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
wada酱完成签到,获得积分10
3秒前
Ry0_发布了新的文献求助10
3秒前
4秒前
hd发布了新的文献求助10
4秒前
5秒前
5秒前
huzhennn发布了新的文献求助10
6秒前
一枝安发布了新的文献求助10
6秒前
愉快梦之发布了新的文献求助10
7秒前
7秒前
8秒前
如意完成签到,获得积分10
8秒前
思源应助淡然的蓝天采纳,获得10
8秒前
8秒前
9秒前
10秒前
wmn完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
Ry0_完成签到,获得积分10
14秒前
沉静冰夏完成签到 ,获得积分10
14秒前
Desperado完成签到,获得积分10
14秒前
贾克斯发布了新的文献求助10
15秒前
15秒前
江苏大学完成签到,获得积分20
15秒前
完美世界应助明月清风采纳,获得10
15秒前
可爱的函函应助刘恋采纳,获得10
15秒前
浮游应助抽疯的电风扇13采纳,获得10
16秒前
123完成签到,获得积分10
16秒前
Lucas完成签到,获得积分10
16秒前
荷京发布了新的文献求助10
17秒前
cjjcdt发布了新的文献求助10
18秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125255
求助须知:如何正确求助?哪些是违规求助? 4329165
关于积分的说明 13490305
捐赠科研通 4163976
什么是DOI,文献DOI怎么找? 2282666
邀请新用户注册赠送积分活动 1283801
关于科研通互助平台的介绍 1223079