Investment Under a Disruptive Risk with Costly Bayesian Learning

贝叶斯概率 投资(军事) 经济 计量经济学 业务 计算机科学 人工智能 精算学 风险分析(工程) 机器学习 政治学 政治 法学
作者
Roel L. G. Nagy,Verena Hagspiel,Sebastian Sund,Jacco Thijssen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4294709
摘要

We study a sequential decision problem in which a firm has the option to invest in a project and can learn about the future profitability of this project prior to investment. The decision process is split into two stages. In the first stage the firm decides whether and how much to invest in learning about the likelihood of a potential disruptive event. The firm pays a learning cost, which depends on the intensity of learning, if the firm decides to invest in learning. Thereafter, it decides when and whether to stop learning and initiate the project by paying a sunk cost. We find that the option to learn is most valuable when it is unclear at the start whether the firm should invest or abandon, i.e. when the revenue flow is average. Then, it is crucial to know whether the disruptive event is likely to arrive soon or not in order to make the optimal decision, hence the firm invests most in learning. The decision to invest in learning is also strongly driven by the range of possible values for the arrival rate of the disruptive event, with investment in learning higher if the range of rates is larger. Furthermore, whether a learning investment is attractive to the firm depends strongly on the prior belief about the arrival rate of the disruptive event. A firm's optimal learning rate is non-monotonic in the firm's learning efficiency. The firm increases its learning rate to decrease its likelihood of making Type I or Type II errors. However, at a certain point, a firm with a higher learning efficiency invests less in learning to save on learning costs. Despite the optimal learning rate being non-monotonic in the learning efficiency, both the probability of making a Type I or II error and the time the firm needs to take a decision decrease monotonically with the learning efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扣我头上发布了新的文献求助10
1秒前
QQ发布了新的文献求助10
1秒前
2秒前
zhangshenlan完成签到 ,获得积分10
2秒前
九又四分之三关注了科研通微信公众号
2秒前
谦让蛋挞完成签到 ,获得积分10
2秒前
Duke_ethan完成签到,获得积分10
6秒前
浅色西完成签到,获得积分10
8秒前
科研通AI2S应助chunyan_sysu采纳,获得10
8秒前
爱听歌寄云完成签到 ,获得积分10
10秒前
11秒前
wannnng完成签到,获得积分20
11秒前
15秒前
16秒前
16秒前
Owen应助yhq采纳,获得10
16秒前
风趣的惜天完成签到 ,获得积分10
18秒前
调皮寒凝发布了新的文献求助10
18秒前
晴晴完成签到,获得积分10
18秒前
19秒前
shitzu完成签到 ,获得积分10
19秒前
19秒前
不配.应助Aroma采纳,获得20
19秒前
科研小肖发布了新的文献求助30
20秒前
20秒前
郜不正完成签到,获得积分10
20秒前
大饼子圆完成签到 ,获得积分10
20秒前
21秒前
21秒前
李爱国应助fhyhfhwer采纳,获得10
24秒前
24秒前
彭于晏应助Aurora采纳,获得10
24秒前
27秒前
27秒前
founder完成签到,获得积分10
28秒前
snowskating完成签到,获得积分20
28秒前
28秒前
舒心的曼青完成签到,获得积分10
29秒前
腰围与爱心相等完成签到,获得积分10
29秒前
yhq发布了新的文献求助10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302