Investment Under a Disruptive Risk with Costly Bayesian Learning

贝叶斯概率 投资(军事) 经济 计量经济学 业务 计算机科学 人工智能 精算学 风险分析(工程) 机器学习 政治学 政治 法学
作者
Roel L. G. Nagy,Verena Hagspiel,Sebastian Sund,Jacco Thijssen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4294709
摘要

We study a sequential decision problem in which a firm has the option to invest in a project and can learn about the future profitability of this project prior to investment. The decision process is split into two stages. In the first stage the firm decides whether and how much to invest in learning about the likelihood of a potential disruptive event. The firm pays a learning cost, which depends on the intensity of learning, if the firm decides to invest in learning. Thereafter, it decides when and whether to stop learning and initiate the project by paying a sunk cost. We find that the option to learn is most valuable when it is unclear at the start whether the firm should invest or abandon, i.e. when the revenue flow is average. Then, it is crucial to know whether the disruptive event is likely to arrive soon or not in order to make the optimal decision, hence the firm invests most in learning. The decision to invest in learning is also strongly driven by the range of possible values for the arrival rate of the disruptive event, with investment in learning higher if the range of rates is larger. Furthermore, whether a learning investment is attractive to the firm depends strongly on the prior belief about the arrival rate of the disruptive event. A firm's optimal learning rate is non-monotonic in the firm's learning efficiency. The firm increases its learning rate to decrease its likelihood of making Type I or Type II errors. However, at a certain point, a firm with a higher learning efficiency invests less in learning to save on learning costs. Despite the optimal learning rate being non-monotonic in the learning efficiency, both the probability of making a Type I or II error and the time the firm needs to take a decision decrease monotonically with the learning efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白瓜完成签到 ,获得积分10
刚刚
123完成签到,获得积分10
2秒前
2秒前
斯文钢笔完成签到 ,获得积分10
3秒前
Hh发布了新的文献求助10
4秒前
司马天寿发布了新的文献求助10
5秒前
上官若男应助lio采纳,获得10
5秒前
wsnice应助呼呼采纳,获得20
7秒前
科研通AI5应助善良的路灯采纳,获得10
7秒前
9秒前
司马天寿完成签到,获得积分20
11秒前
11秒前
汤圆完成签到,获得积分10
12秒前
bitahu发布了新的文献求助10
12秒前
希望天下0贩的0应助lixm采纳,获得10
12秒前
科研通AI2S应助敦敦采纳,获得10
13秒前
14秒前
_呱_应助楼台杏花琴弦采纳,获得50
15秒前
咸鱼一号发布了新的文献求助10
15秒前
正经俠发布了新的文献求助10
15秒前
李志远完成签到,获得积分10
16秒前
ghh发布了新的文献求助10
16秒前
17秒前
77paocai完成签到,获得积分10
18秒前
CCL完成签到,获得积分10
19秒前
明亮的绫完成签到 ,获得积分10
19秒前
祖诗云完成签到,获得积分0
20秒前
jiewen发布了新的文献求助10
22秒前
22秒前
Oz完成签到,获得积分10
22秒前
zhukun发布了新的文献求助10
23秒前
23秒前
26秒前
香蕉觅云应助oliver501采纳,获得10
26秒前
正经俠完成签到 ,获得积分20
27秒前
YY完成签到 ,获得积分10
28秒前
清秀灵薇发布了新的文献求助10
28秒前
LZL完成签到 ,获得积分10
28秒前
油焖青椒完成签到,获得积分10
28秒前
不会学术的羊完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849