Investment Under a Disruptive Risk with Costly Bayesian Learning

贝叶斯概率 投资(军事) 经济 计量经济学 业务 计算机科学 人工智能 精算学 风险分析(工程) 机器学习 政治学 政治 法学
作者
Roel L. G. Nagy,Verena Hagspiel,Sebastian Sund,Jacco Thijssen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4294709
摘要

We study a sequential decision problem in which a firm has the option to invest in a project and can learn about the future profitability of this project prior to investment. The decision process is split into two stages. In the first stage the firm decides whether and how much to invest in learning about the likelihood of a potential disruptive event. The firm pays a learning cost, which depends on the intensity of learning, if the firm decides to invest in learning. Thereafter, it decides when and whether to stop learning and initiate the project by paying a sunk cost. We find that the option to learn is most valuable when it is unclear at the start whether the firm should invest or abandon, i.e. when the revenue flow is average. Then, it is crucial to know whether the disruptive event is likely to arrive soon or not in order to make the optimal decision, hence the firm invests most in learning. The decision to invest in learning is also strongly driven by the range of possible values for the arrival rate of the disruptive event, with investment in learning higher if the range of rates is larger. Furthermore, whether a learning investment is attractive to the firm depends strongly on the prior belief about the arrival rate of the disruptive event. A firm's optimal learning rate is non-monotonic in the firm's learning efficiency. The firm increases its learning rate to decrease its likelihood of making Type I or Type II errors. However, at a certain point, a firm with a higher learning efficiency invests less in learning to save on learning costs. Despite the optimal learning rate being non-monotonic in the learning efficiency, both the probability of making a Type I or II error and the time the firm needs to take a decision decrease monotonically with the learning efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁甲小杨完成签到,获得积分10
1秒前
小城故事完成签到,获得积分10
1秒前
戴维少尉完成签到,获得积分10
2秒前
大吴克发布了新的文献求助10
3秒前
甜甜甜完成签到,获得积分10
4秒前
Yuna完成签到,获得积分10
5秒前
5秒前
yar驳回了Ava应助
6秒前
Jasper应助可期采纳,获得10
6秒前
木木完成签到,获得积分10
7秒前
縤雨完成签到 ,获得积分10
7秒前
yunjian1583完成签到,获得积分10
7秒前
firewood完成签到,获得积分10
7秒前
无所谓的啦完成签到,获得积分10
8秒前
淡然思卉完成签到,获得积分10
8秒前
晨曦应助maodoudou采纳,获得20
10秒前
彭于晏应助YYLLTX采纳,获得10
10秒前
木木发布了新的文献求助10
11秒前
萝卜完成签到,获得积分10
11秒前
Lengbo完成签到,获得积分10
12秒前
六步郎完成签到,获得积分10
12秒前
美丽的仙人掌完成签到,获得积分10
13秒前
13秒前
15秒前
666完成签到 ,获得积分10
15秒前
cavendipeng完成签到,获得积分10
16秒前
17秒前
大吴克发布了新的文献求助10
18秒前
18秒前
tian发布了新的文献求助10
19秒前
Sherry发布了新的文献求助10
19秒前
20秒前
ccyy完成签到 ,获得积分10
21秒前
21秒前
木木完成签到,获得积分10
22秒前
英俊的铭应助sss采纳,获得10
22秒前
伯赏泽洋完成签到,获得积分10
22秒前
KKKK完成签到,获得积分10
23秒前
by完成签到,获得积分10
23秒前
Zoe完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470