TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity

计算机科学 一般化 适用范围 透明度(行为) 人工智能 机器学习 数量结构-活动关系 训练集 集合(抽象数据类型) 数学 计算机安全 数学分析 程序设计语言
作者
Maria Vittoria Togo,Fabrizio Mastrolorito,Fulvio Ciriaco,Daniela Trisciuzzi,Anna Rita Tondo,Nicola Gambacorta,Loredana Bellantuono,A. Monaco,Francesco Leonetti,R. Bellotti,Cosimo Altomare,Nicola Amoroso,Orazio Nicolotti
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 56-66 被引量:14
标识
DOI:10.1021/acs.jcim.2c01126
摘要

Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫笑寒发布了新的文献求助10
3秒前
4秒前
doctor发布了新的文献求助10
4秒前
7秒前
清秀灵薇完成签到,获得积分10
9秒前
10秒前
莫笑寒完成签到,获得积分10
12秒前
14秒前
15秒前
用心听完成签到,获得积分20
15秒前
烟花应助王359采纳,获得10
15秒前
栗子发布了新的文献求助10
15秒前
成就问寒发布了新的文献求助30
16秒前
ff完成签到,获得积分10
17秒前
固的曼完成签到,获得积分10
18秒前
用心听发布了新的文献求助10
21秒前
23秒前
26秒前
成就问寒完成签到,获得积分10
28秒前
HeyYou完成签到,获得积分10
30秒前
上进生发布了新的文献求助10
30秒前
32秒前
研友_qZ6V1Z完成签到,获得积分20
32秒前
33秒前
34秒前
富兰克林的薄荷糖完成签到,获得积分10
34秒前
36秒前
38秒前
无辜访彤发布了新的文献求助10
38秒前
丘比特应助SS采纳,获得10
39秒前
王359发布了新的文献求助10
39秒前
海城好人发布了新的文献求助30
40秒前
王359完成签到,获得积分10
44秒前
詹密完成签到,获得积分10
45秒前
Ava应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
Akim应助科研通管家采纳,获得80
46秒前
大个应助科研通管家采纳,获得10
46秒前
ding应助科研通管家采纳,获得10
47秒前
47秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228