TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity

计算机科学 一般化 适用范围 透明度(行为) 人工智能 机器学习 数量结构-活动关系 训练集 集合(抽象数据类型) 数学 计算机安全 数学分析 程序设计语言
作者
Maria Vittoria Togo,Fabrizio Mastrolorito,Fulvio Ciriaco,Daniela Trisciuzzi,Anna Rita Tondo,Nicola Gambacorta,Loredana Bellantuono,A. Monaco,Francesco Leonetti,R. Bellotti,Cosimo Altomare,Nicola Amoroso,Orazio Nicolotti
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 56-66 被引量:25
标识
DOI:10.1021/acs.jcim.2c01126
摘要

Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助快乐煎饼采纳,获得30
刚刚
谁敢说抹茶不好吃完成签到,获得积分10
刚刚
小蘑菇应助小脸红扑扑采纳,获得30
1秒前
BINGBING1230发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
伽蓝浮生完成签到,获得积分20
3秒前
4秒前
4秒前
6秒前
科研通AI5应助chenshasha采纳,获得10
6秒前
科研的人发布了新的文献求助10
6秒前
wjh完成签到,获得积分10
7秒前
7秒前
燊yy发布了新的文献求助10
8秒前
梓唯忧完成签到 ,获得积分10
8秒前
吴迪发布了新的文献求助10
9秒前
结实半邪完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
LUMOS发布了新的文献求助10
10秒前
10秒前
账号本人发布了新的文献求助20
10秒前
周易发布了新的文献求助10
11秒前
12秒前
12秒前
孤心匠发布了新的文献求助50
12秒前
1111完成签到 ,获得积分10
12秒前
万能图书馆应助德玛西亚采纳,获得10
14秒前
董晴发布了新的文献求助10
14秒前
FashionBoy应助SCH_zhu采纳,获得10
14秒前
15秒前
Owen应助远志采纳,获得10
16秒前
coolcy完成签到,获得积分10
16秒前
浮游应助哈哈哈采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898203
求助须知:如何正确求助?哪些是违规求助? 4179039
关于积分的说明 12973629
捐赠科研通 3942934
什么是DOI,文献DOI怎么找? 2162973
邀请新用户注册赠送积分活动 1181522
关于科研通互助平台的介绍 1086962