TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity

计算机科学 一般化 适用范围 透明度(行为) 人工智能 机器学习 数量结构-活动关系 训练集 集合(抽象数据类型) 数学 计算机安全 数学分析 程序设计语言
作者
Maria Vittoria Togo,Fabrizio Mastrolorito,Fulvio Ciriaco,Daniela Trisciuzzi,Anna Rita Tondo,Nicola Gambacorta,Loredana Bellantuono,A. Monaco,Francesco Leonetti,R. Bellotti,Cosimo Altomare,Nicola Amoroso,Orazio Nicolotti
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 56-66 被引量:25
标识
DOI:10.1021/acs.jcim.2c01126
摘要

Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
He发布了新的文献求助10
刚刚
甜兰儿发布了新的文献求助10
刚刚
1秒前
Akko发布了新的文献求助10
1秒前
1秒前
寒冷煎饼发布了新的文献求助10
1秒前
papa应助懵懂的土豆采纳,获得20
1秒前
牛牛发布了新的文献求助10
2秒前
JT完成签到,获得积分20
2秒前
9sy发布了新的文献求助10
2秒前
dio发布了新的文献求助20
3秒前
新羽完成签到,获得积分10
3秒前
3秒前
4秒前
filory发布了新的文献求助10
4秒前
4秒前
4秒前
wyh3218发布了新的文献求助10
5秒前
kei发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
共享精神应助SophiaMX采纳,获得10
6秒前
无奈砖头完成签到,获得积分10
6秒前
6秒前
6秒前
搜集达人应助狂奔弟弟采纳,获得10
7秒前
7秒前
8秒前
KDHACJHBQEVL发布了新的文献求助30
8秒前
8秒前
ttli发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
脑洞疼应助甜兰儿采纳,获得10
10秒前
HJJHJH发布了新的文献求助20
10秒前
迷人白梦发布了新的文献求助10
10秒前
赶紧毕业完成签到,获得积分10
10秒前
王勾勾发布了新的文献求助10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421