TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity

计算机科学 一般化 适用范围 透明度(行为) 人工智能 机器学习 数量结构-活动关系 训练集 集合(抽象数据类型) 数学 计算机安全 数学分析 程序设计语言
作者
Maria Vittoria Togo,Fabrizio Mastrolorito,Fulvio Ciriaco,Daniela Trisciuzzi,Anna Rita Tondo,Nicola Gambacorta,Loredana Bellantuono,A. Monaco,Francesco Leonetti,R. Bellotti,Cosimo Altomare,Nicola Amoroso,Orazio Nicolotti
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 56-66 被引量:25
标识
DOI:10.1021/acs.jcim.2c01126
摘要

Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIU完成签到,获得积分10
刚刚
刚刚
luodaxia发布了新的文献求助10
2秒前
ding应助lili采纳,获得10
2秒前
领导范儿应助胡杨采纳,获得10
3秒前
bkagyin应助yuyuyu采纳,获得10
4秒前
Ava应助pharrah采纳,获得10
4秒前
5秒前
YMM完成签到,获得积分10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
柯一一应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
shiy完成签到,获得积分20
5秒前
Ava应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得20
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
xl123完成签到,获得积分20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
马华化完成签到,获得积分0
7秒前
zhanghl发布了新的文献求助10
7秒前
叶123完成签到,获得积分20
8秒前
luodaxia完成签到,获得积分10
11秒前
12秒前
英勇代荷完成签到,获得积分20
12秒前
kkkxy发布了新的文献求助10
12秒前
烟花应助HHH采纳,获得10
12秒前
Hanayu完成签到 ,获得积分10
12秒前
lqy完成签到,获得积分10
13秒前
任元元发布了新的文献求助10
15秒前
17秒前
lqy发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963