Integrated metabolomics and machine learning approach to predict hypertensive disorders of pregnancy

代谢组学 医学 怀孕 多元分析 尿 单变量分析 妊娠高血压 子痫前期 胎儿 内科学 生理学 产科 生物信息学 生物 遗传学
作者
Bincy Varghese,Aishwarya Jala,Soumya Meka,Deepthi Adla,Shraddha Jangili,Ratna Kanta Talukdar,M. S. Narasinga Rao,Roshan M. Borkar,Ramu Adela
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (2): 100829-100829 被引量:18
标识
DOI:10.1016/j.ajogmf.2022.100829
摘要

Hypertensive disorders of pregnancy account for 3% to 10% of maternal-fetal morbidity and mortality worldwide. This condition has been considered one of the leading causes of maternal deaths in developing countries, such as India.This study aimed to discover hypertensive disorders of pregnancy-specific candidate urine metabolites as markers for hypertensive disorders of pregnancy by applying integrated metabolomics and machine learning approaches.The targeted urinary metabolomics study was conducted in 70 healthy pregnant controls and 133 pregnant patients having hypertension as cases. Hypertensive disorders of pregnancy-specific metabolites for disease prediction were further extracted using univariate and multivariate statistical analyses. For machine learning analysis, 80% of the data were used for training (79 for hypertensive disorders of pregnancy and 42 for healthy pregnancy) and validation (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy), and 20% of the data were used for test sets (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy).The statistical analysis using an unpaired t test revealed 44 differential metabolites. Pathway analysis showed mainly that purine and thiamine metabolism were altered in the group with hypertensive disorders of pregnancy compared with the healthy pregnancy group. The area under the receiver operating characteristic curves of the 5 most predominant metabolites were 0.98 (adenosine), 0.92 (adenosine monophosphate), 0.89 (deoxyadenosine), 0.81 (thiamine), and 0.81 (thiamine monophosphate). The best prediction accuracies were obtained using 2 machine learning models (95% for the gradient boost model and 98% for the decision tree) among the 5 used models. The machine learning models showed higher predictive performance for 3 metabolites (ie, thiamine monophosphate, adenosine monophosphate, and thiamine) among 5 metabolites. The combined accuracies of adenosine from all models were 98.6 in the training set and 95.6 in the test set. Moreover, the predictive performance of adenosine was higher than other metabolites. The relative feature importance of adenosine was also observed in the decision tree and the gradient boost model.Among other metabolites, adenosine and thiamine metabolites were found to differentiate participants with hypertensive disorders of pregnancy from participants with healthy pregnancies; hence, these metabolites can serve as a promising noninvasive marker for the detection of hypertensive disorders of pregnancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1111应助xpy采纳,获得10
刚刚
1秒前
研究冻融微塑料中完成签到,获得积分10
1秒前
SIMON完成签到 ,获得积分10
1秒前
chen完成签到,获得积分10
1秒前
打打应助云136采纳,获得10
2秒前
草莓发布了新的文献求助10
2秒前
rrjl完成签到,获得积分10
3秒前
3秒前
wanci应助赵琼珍采纳,获得10
3秒前
4秒前
4秒前
YongLiu完成签到,获得积分10
4秒前
蔡宇滔发布了新的文献求助10
4秒前
Li完成签到,获得积分10
4秒前
ll发布了新的文献求助10
4秒前
思源应助ljj001ljj采纳,获得10
4秒前
英俊的铭应助yishui采纳,获得10
5秒前
高等会完成签到,获得积分10
5秒前
给我好好读书完成签到,获得积分10
5秒前
lwroche完成签到,获得积分10
5秒前
科研通AI2S应助hbhbj采纳,获得10
5秒前
坚定如南完成签到 ,获得积分10
5秒前
5秒前
iceeer发布了新的文献求助30
6秒前
tango完成签到,获得积分10
6秒前
wanci应助罗马采纳,获得10
6秒前
1234完成签到,获得积分10
6秒前
nana完成签到,获得积分10
7秒前
swordlee发布了新的文献求助10
7秒前
璇22完成签到,获得积分10
7秒前
叶子完成签到,获得积分10
7秒前
7秒前
周周发布了新的文献求助10
9秒前
9秒前
666关闭了666文献求助
10秒前
Jeff发布了新的文献求助30
10秒前
默默诗筠发布了新的文献求助20
10秒前
棒棒糖完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414097
求助须知:如何正确求助?哪些是违规求助? 4531108
关于积分的说明 14126470
捐赠科研通 4446315
什么是DOI,文献DOI怎么找? 2439388
邀请新用户注册赠送积分活动 1431496
关于科研通互助平台的介绍 1409202