Integrated metabolomics and machine learning approach to predict hypertensive disorders of pregnancy

代谢组学 医学 怀孕 多元分析 尿 单变量分析 妊娠高血压 子痫前期 胎儿 内科学 生理学 产科 生物信息学 生物 遗传学
作者
Bincy Varghese,Aishwarya Jala,Soumya Meka,Deepthi Adla,Shraddha Jangili,Ratna Kanta Talukdar,M. S. Narasinga Rao,Roshan M. Borkar,Ramu Adela
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:5 (2): 100829-100829 被引量:18
标识
DOI:10.1016/j.ajogmf.2022.100829
摘要

Hypertensive disorders of pregnancy account for 3% to 10% of maternal-fetal morbidity and mortality worldwide. This condition has been considered one of the leading causes of maternal deaths in developing countries, such as India.This study aimed to discover hypertensive disorders of pregnancy-specific candidate urine metabolites as markers for hypertensive disorders of pregnancy by applying integrated metabolomics and machine learning approaches.The targeted urinary metabolomics study was conducted in 70 healthy pregnant controls and 133 pregnant patients having hypertension as cases. Hypertensive disorders of pregnancy-specific metabolites for disease prediction were further extracted using univariate and multivariate statistical analyses. For machine learning analysis, 80% of the data were used for training (79 for hypertensive disorders of pregnancy and 42 for healthy pregnancy) and validation (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy), and 20% of the data were used for test sets (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy).The statistical analysis using an unpaired t test revealed 44 differential metabolites. Pathway analysis showed mainly that purine and thiamine metabolism were altered in the group with hypertensive disorders of pregnancy compared with the healthy pregnancy group. The area under the receiver operating characteristic curves of the 5 most predominant metabolites were 0.98 (adenosine), 0.92 (adenosine monophosphate), 0.89 (deoxyadenosine), 0.81 (thiamine), and 0.81 (thiamine monophosphate). The best prediction accuracies were obtained using 2 machine learning models (95% for the gradient boost model and 98% for the decision tree) among the 5 used models. The machine learning models showed higher predictive performance for 3 metabolites (ie, thiamine monophosphate, adenosine monophosphate, and thiamine) among 5 metabolites. The combined accuracies of adenosine from all models were 98.6 in the training set and 95.6 in the test set. Moreover, the predictive performance of adenosine was higher than other metabolites. The relative feature importance of adenosine was also observed in the decision tree and the gradient boost model.Among other metabolites, adenosine and thiamine metabolites were found to differentiate participants with hypertensive disorders of pregnancy from participants with healthy pregnancies; hence, these metabolites can serve as a promising noninvasive marker for the detection of hypertensive disorders of pregnancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucifer完成签到,获得积分10
刚刚
小t要读top博完成签到,获得积分10
刚刚
善学以致用应助琂当归采纳,获得10
刚刚
15987完成签到,获得积分10
1秒前
李健应助Fengyun采纳,获得10
1秒前
1秒前
米雪儿发布了新的文献求助10
1秒前
1秒前
月墨琼关注了科研通微信公众号
1秒前
zyb发布了新的文献求助10
2秒前
结实康完成签到,获得积分10
2秒前
好运6连完成签到,获得积分10
2秒前
EarendilK完成签到,获得积分10
3秒前
阿治发布了新的文献求助10
3秒前
九局下半完成签到 ,获得积分10
3秒前
汀沐完成签到 ,获得积分10
4秒前
zyh完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
好运6连发布了新的文献求助10
5秒前
cyndi发布了新的文献求助10
6秒前
九局下半发布了新的文献求助10
6秒前
山顶风景很美关注了科研通微信公众号
6秒前
6秒前
可爱的函函应助康丽采纳,获得10
6秒前
奋斗的苹果完成签到,获得积分10
6秒前
Lidanni完成签到 ,获得积分10
7秒前
觉允若意完成签到,获得积分10
7秒前
慕青应助giraffes采纳,获得10
7秒前
Zx_1993应助松弛的小刀采纳,获得20
7秒前
Dokkkie完成签到,获得积分10
7秒前
年岁完成签到 ,获得积分10
8秒前
热可可728完成签到,获得积分10
8秒前
zhonglv7应助虚心夏真采纳,获得10
8秒前
9秒前
缥缈凡旋完成签到,获得积分10
9秒前
共享精神应助元元采纳,获得10
9秒前
小叶子完成签到,获得积分10
10秒前
田园完成签到,获得积分10
10秒前
kk完成签到 ,获得积分10
10秒前
小蘑菇应助望仔采纳,获得10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118890
求助须知:如何正确求助?哪些是违规求助? 4324759
关于积分的说明 13473797
捐赠科研通 4157838
什么是DOI,文献DOI怎么找? 2278621
邀请新用户注册赠送积分活动 1280407
关于科研通互助平台的介绍 1219205