Integrated metabolomics and machine learning approach to predict hypertensive disorders of pregnancy

代谢组学 医学 怀孕 多元分析 尿 单变量分析 妊娠高血压 子痫前期 胎儿 内科学 生理学 产科 生物信息学 生物 遗传学
作者
Bincy Varghese,Aishwarya Jala,Soumya Meka,Deepthi Adla,Shraddha Jangili,Ratna Kanta Talukdar,M. S. Narasinga Rao,Roshan M. Borkar,Ramu Adela
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (2): 100829-100829 被引量:13
标识
DOI:10.1016/j.ajogmf.2022.100829
摘要

Hypertensive disorders of pregnancy account for 3% to 10% of maternal-fetal morbidity and mortality worldwide. This condition has been considered one of the leading causes of maternal deaths in developing countries, such as India.This study aimed to discover hypertensive disorders of pregnancy-specific candidate urine metabolites as markers for hypertensive disorders of pregnancy by applying integrated metabolomics and machine learning approaches.The targeted urinary metabolomics study was conducted in 70 healthy pregnant controls and 133 pregnant patients having hypertension as cases. Hypertensive disorders of pregnancy-specific metabolites for disease prediction were further extracted using univariate and multivariate statistical analyses. For machine learning analysis, 80% of the data were used for training (79 for hypertensive disorders of pregnancy and 42 for healthy pregnancy) and validation (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy), and 20% of the data were used for test sets (27 for hypertensive disorders of pregnancy and 14 for healthy pregnancy).The statistical analysis using an unpaired t test revealed 44 differential metabolites. Pathway analysis showed mainly that purine and thiamine metabolism were altered in the group with hypertensive disorders of pregnancy compared with the healthy pregnancy group. The area under the receiver operating characteristic curves of the 5 most predominant metabolites were 0.98 (adenosine), 0.92 (adenosine monophosphate), 0.89 (deoxyadenosine), 0.81 (thiamine), and 0.81 (thiamine monophosphate). The best prediction accuracies were obtained using 2 machine learning models (95% for the gradient boost model and 98% for the decision tree) among the 5 used models. The machine learning models showed higher predictive performance for 3 metabolites (ie, thiamine monophosphate, adenosine monophosphate, and thiamine) among 5 metabolites. The combined accuracies of adenosine from all models were 98.6 in the training set and 95.6 in the test set. Moreover, the predictive performance of adenosine was higher than other metabolites. The relative feature importance of adenosine was also observed in the decision tree and the gradient boost model.Among other metabolites, adenosine and thiamine metabolites were found to differentiate participants with hypertensive disorders of pregnancy from participants with healthy pregnancies; hence, these metabolites can serve as a promising noninvasive marker for the detection of hypertensive disorders of pregnancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠从云完成签到 ,获得积分10
刚刚
1秒前
爱笑的大白菜完成签到 ,获得积分20
1秒前
zchao完成签到,获得积分10
1秒前
flysky120发布了新的文献求助200
2秒前
小马甲应助clcl采纳,获得10
2秒前
玩命的毛衣完成签到 ,获得积分10
3秒前
youngk完成签到 ,获得积分10
3秒前
FancyShi发布了新的文献求助10
4秒前
Singularity应助自信的紫青采纳,获得10
5秒前
QYW发布了新的文献求助30
5秒前
orixero应助踏雪无痕采纳,获得10
6秒前
CodeCraft应助爱笑的大白菜采纳,获得10
8秒前
8秒前
8秒前
vanilla完成签到,获得积分10
9秒前
陈博士完成签到,获得积分10
10秒前
Emily完成签到,获得积分10
10秒前
马东完成签到,获得积分10
13秒前
在水一方应助qiiq1997采纳,获得10
13秒前
bluefire完成签到,获得积分10
14秒前
14秒前
vetXue发布了新的文献求助10
14秒前
Erick爱喝粥完成签到,获得积分10
15秒前
机智依丝发布了新的文献求助10
15秒前
16秒前
小小王发布了新的文献求助10
16秒前
17秒前
英俊的铭应助慕辰采纳,获得10
19秒前
啦啦啦发布了新的文献求助10
20秒前
zrz完成签到,获得积分10
20秒前
21秒前
21秒前
ahaaa发布了新的文献求助10
22秒前
22秒前
天天快乐应助激情的一斩采纳,获得10
22秒前
欢喜的代容完成签到,获得积分10
23秒前
隐形之玉完成签到,获得积分10
23秒前
24秒前
NexusExplorer应助mml采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023