A novel prediction model for wind power based on improved long short-term memory neural network

风力发电 人工神经网络 计算机科学 超参数 功率(物理) 期限(时间) 非线性系统 算法 混乱的 风速 高斯分布 电力系统 循环神经网络 人工智能 气象学 工程类 物理 电气工程 量子力学
作者
Jianing Wang,Hongqiu Zhu,Yingjie Zhang,Fei Cheng,Can Zhou
出处
期刊:Energy [Elsevier BV]
卷期号:265: 126283-126283 被引量:77
标识
DOI:10.1016/j.energy.2022.126283
摘要

Wind power generation technology has attracted worldwide attention. However, its inherent nonlinearity and uncertainty make itself hard to be accurately predicted. As a result, exploring the ways to remedy these defects become the key to the stable operation of power grid. This paper proposed a wind power prediction model based on the improved Long Short-Term Memory (LSTM) network to fit the nonlinearity between data variables and wind power. The chaotic sequence and Gaussian mutation strategy are introduced into the original sparrow algorithm, so as to improve its stability and search performance. Then, the modified sparrow algorithm is implemented to adjust the LSTM network's hyperparameters like batch size, cell number and learning rate; and therefore the prediction accuracy is increased. After that, the improved model is applied to the data sets of a wind farm in Hunan province during the four seasons of 2020. And then it is compared with other four combined models. The experimental results show that, the RMSE of the proposed prediction method is reduced respectively by 37.37%, 13.44%, 10.64% and 20.78% in four seasons. It is proved that the proposed method improves the accuracy for wind power prediction and the effectiveness for power dispatching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
zxy发布了新的文献求助10
1秒前
2秒前
2秒前
SciGPT应助VictorySaber采纳,获得10
2秒前
3秒前
周轩完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
Ailyn发布了新的文献求助10
5秒前
脑洞疼应助an采纳,获得10
5秒前
6秒前
土木猪猪完成签到,获得积分10
6秒前
华仔应助Janmy采纳,获得10
6秒前
6秒前
orixero应助jg采纳,获得10
6秒前
多情广山发布了新的文献求助10
7秒前
共享精神应助my采纳,获得10
7秒前
顾矜应助火花采纳,获得10
7秒前
烟花应助唯有采纳,获得10
8秒前
wxyshare应助猕猴桃采纳,获得10
8秒前
8秒前
梦里花落声应助Mr鹿采纳,获得10
9秒前
周博发布了新的文献求助10
9秒前
9秒前
今后应助小怪采纳,获得10
10秒前
研友_nEW4G8完成签到,获得积分10
11秒前
傲慢帝完成签到,获得积分10
11秒前
xixili发布了新的文献求助10
11秒前
11秒前
xz完成签到,获得积分20
11秒前
senlin发布了新的文献求助10
11秒前
11秒前
大模型应助qinkoko采纳,获得10
12秒前
Owen应助克劳克伊采纳,获得10
12秒前
我是奇葩发布了新的文献求助10
12秒前
amberzyc应助单薄的胜采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Integrating supply and demand-side management in renewable-based energy systems 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251098
求助须知:如何正确求助?哪些是违规求助? 4415232
关于积分的说明 13745342
捐赠科研通 4286905
什么是DOI,文献DOI怎么找? 2352133
邀请新用户注册赠送积分活动 1349017
关于科研通互助平台的介绍 1308502