Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

计算机科学 放大倍数 分辨率(逻辑) 人工智能 概化理论 比例(比率) 图像分辨率 深度学习 医学影像学 算法 计算机视觉 数学 统计 物理 量子力学
作者
Lei Deng,Yuanzhi Zhang,Xin Yang,Shu-Chun Huang,Jing Wang
出处
期刊:Computers, materials & continua 卷期号:75 (2): 2671-2684
标识
DOI:10.32604/cmc.2023.036642
摘要

High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm combines a meta-learning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module. The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale. Meanwhile, we design a non-integer mapping relation for super-resolution, which allows the network to be trained under non-integer magnification requirements. Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region. The meta-learning multiscale super-resolution algorithm obtained a surpassing of about 2% at a smaller model volume. Testing on different parts proves the high generalizability of our algorithm. Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images. It can be of great use in imaging related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤奋鑫鹏完成签到,获得积分10
1秒前
顾矜应助akui采纳,获得10
2秒前
神凰发布了新的文献求助10
2秒前
兔子先生完成签到,获得积分10
3秒前
认真的一刀完成签到,获得积分10
4秒前
6秒前
小燕发布了新的文献求助10
6秒前
藤椒辣鱼应助兔子先生采纳,获得10
8秒前
bkagyin应助啦啦采纳,获得10
10秒前
医痞子发布了新的文献求助10
11秒前
13秒前
14秒前
15秒前
xiaoya927217发布了新的文献求助10
16秒前
情怀应助暴躁小兔采纳,获得10
16秒前
小谷发布了新的文献求助10
16秒前
华仔应助许宗菊采纳,获得30
17秒前
大西瓜关注了科研通微信公众号
17秒前
18秒前
英姑应助无辜又菡采纳,获得30
18秒前
呆呆小猪完成签到,获得积分10
18秒前
橙子发布了新的文献求助10
18秒前
19秒前
FU完成签到,获得积分10
20秒前
akui发布了新的文献求助10
20秒前
眼睛大远航完成签到,获得积分10
21秒前
张小馨完成签到 ,获得积分10
22秒前
大胆中恶发布了新的文献求助30
22秒前
桂花发布了新的文献求助30
22秒前
Xy完成签到,获得积分10
22秒前
22秒前
LZQ发布了新的文献求助10
23秒前
24秒前
咕噜咕噜发布了新的文献求助10
24秒前
25秒前
FU发布了新的文献求助10
26秒前
27秒前
剪刀石头布完成签到,获得积分10
27秒前
沐风应助多肉葡萄采纳,获得20
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233