Visual Perception and Convolutional Neural Network-Based Robotic Autonomous Lung Ultrasound Scanning Localization System

卷积神经网络 计算机视觉 计算机科学 超声波 人工智能 感知 人工神经网络 声学 物理 神经科学 心理学
作者
Boheng Zhang,Haibo Cong,Yi Shen,Mingjian Sun
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 961-974 被引量:4
标识
DOI:10.1109/tuffc.2023.3263514
摘要

Under the situation of severe COVID-19 epidemic, lung ultrasound (LUS) has been proved to be an effective and convenient method to diagnose and evaluate the extent of respiratory disease. However, the traditional clinical ultrasound (US) scanning requires doctors not only to be in close contact with patients but also to have rich experience. In order to alleviate the shortage of medical resources and reduce the work stress and risk of infection for doctors, we propose a visual perception and convolutional neural network (CNN)-based robotic autonomous LUS scanning localization system to realize scanned target recognition, probe pose solution and movement, and the acquisition of US images. The LUS scanned targets are identified through the target segmentation and localization algorithm based on the improved CNN, which is using the depth camera to collect the image information; furthermore, the method based on multiscale compensation normal vector is used to solve the attitude of the probe; finally, a position control strategy based on force feedback is designed to optimize the position and attitude of the probe, which can not only obtain high-quality US images but also ensure the safety of patients and the system. The results of human LUS scanning experiment verify the accuracy and feasibility of the system. The positioning accuracy of the scanned targets is 15.63 ± 0.18 mm, and the distance accuracy and rotation angle accuracy of the probe position calculation are 6.38 ± 0.25 mm and 8.60° ±2.29° , respectively. More importantly, the obtained high-quality US images can clearly capture the main pathological features of the lung. The system is expected to be applied in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wkjfh应助自由思枫采纳,获得50
刚刚
左丘冬寒完成签到,获得积分10
刚刚
头秃科研人完成签到,获得积分10
刚刚
红糖发糕发布了新的文献求助10
1秒前
qiu发布了新的文献求助10
2秒前
3秒前
科研通AI6应助犹豫梦旋采纳,获得10
4秒前
4秒前
billyin完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
果子发布了新的文献求助10
5秒前
可爱的函函应助杨洋采纳,获得10
5秒前
张弛华完成签到,获得积分10
6秒前
rongrong完成签到,获得积分10
6秒前
6秒前
充电宝应助闪闪大米采纳,获得10
6秒前
ding应助阳光鹭洋采纳,获得10
7秒前
羊咩咩哒完成签到,获得积分10
7秒前
9秒前
cmmmmmm完成签到,获得积分10
9秒前
9秒前
简简单单完成签到,获得积分10
9秒前
有机小鸟发布了新的文献求助10
9秒前
xingxinghan完成签到 ,获得积分10
10秒前
资浩阑完成签到,获得积分10
11秒前
星空之下ssr完成签到,获得积分10
11秒前
77发布了新的文献求助10
11秒前
Jimmy Ko完成签到,获得积分10
11秒前
充电宝应助Pom采纳,获得10
12秒前
12秒前
jwxstc发布了新的文献求助10
12秒前
cola121完成签到 ,获得积分10
12秒前
qiu完成签到,获得积分10
14秒前
Jimmy Ko发布了新的文献求助10
14秒前
聪明怜阳发布了新的文献求助10
15秒前
15秒前
15秒前
whs完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382