Visual Perception and Convolutional Neural Network-Based Robotic Autonomous Lung Ultrasound Scanning Localization System

卷积神经网络 计算机视觉 计算机科学 超声波 人工智能 感知 人工神经网络 声学 物理 神经科学 心理学
作者
Boheng Zhang,Haibo Cong,Yi Shen,Mingjian Sun
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 961-974 被引量:4
标识
DOI:10.1109/tuffc.2023.3263514
摘要

Under the situation of severe COVID-19 epidemic, lung ultrasound (LUS) has been proved to be an effective and convenient method to diagnose and evaluate the extent of respiratory disease. However, the traditional clinical ultrasound (US) scanning requires doctors not only to be in close contact with patients but also to have rich experience. In order to alleviate the shortage of medical resources and reduce the work stress and risk of infection for doctors, we propose a visual perception and convolutional neural network (CNN)-based robotic autonomous LUS scanning localization system to realize scanned target recognition, probe pose solution and movement, and the acquisition of US images. The LUS scanned targets are identified through the target segmentation and localization algorithm based on the improved CNN, which is using the depth camera to collect the image information; furthermore, the method based on multiscale compensation normal vector is used to solve the attitude of the probe; finally, a position control strategy based on force feedback is designed to optimize the position and attitude of the probe, which can not only obtain high-quality US images but also ensure the safety of patients and the system. The results of human LUS scanning experiment verify the accuracy and feasibility of the system. The positioning accuracy of the scanned targets is 15.63 ± 0.18 mm, and the distance accuracy and rotation angle accuracy of the probe position calculation are 6.38 ± 0.25 mm and 8.60° ±2.29° , respectively. More importantly, the obtained high-quality US images can clearly capture the main pathological features of the lung. The system is expected to be applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
wsx完成签到,获得积分10
刚刚
xx完成签到,获得积分10
1秒前
青春梦发布了新的文献求助200
1秒前
1秒前
gi完成签到,获得积分10
2秒前
3秒前
沐阳发布了新的文献求助30
4秒前
Adax完成签到,获得积分20
4秒前
崔老师完成签到,获得积分10
4秒前
4秒前
5秒前
ZJX应助wsx采纳,获得10
5秒前
5秒前
木谦发布了新的文献求助10
6秒前
文艺向松完成签到,获得积分10
6秒前
fen发布了新的文献求助10
6秒前
7秒前
matrixu完成签到,获得积分10
7秒前
DWQ发布了新的文献求助10
8秒前
潇洒平凡发布了新的文献求助30
8秒前
8秒前
大方的百川完成签到,获得积分20
8秒前
8秒前
9秒前
HuangXintong完成签到,获得积分20
9秒前
papa完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
gi发布了新的文献求助10
10秒前
11秒前
Hello应助leaf采纳,获得10
11秒前
11秒前
快乐的妙菱完成签到,获得积分10
12秒前
灵巧大地完成签到,获得积分10
12秒前
zl完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609