Visual Perception and Convolutional Neural Network-Based Robotic Autonomous Lung Ultrasound Scanning Localization System

卷积神经网络 计算机视觉 计算机科学 超声波 人工智能 感知 人工神经网络 声学 物理 神经科学 心理学
作者
Boheng Zhang,Haibo Cong,Yi Shen,Mingjian Sun
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 961-974 被引量:4
标识
DOI:10.1109/tuffc.2023.3263514
摘要

Under the situation of severe COVID-19 epidemic, lung ultrasound (LUS) has been proved to be an effective and convenient method to diagnose and evaluate the extent of respiratory disease. However, the traditional clinical ultrasound (US) scanning requires doctors not only to be in close contact with patients but also to have rich experience. In order to alleviate the shortage of medical resources and reduce the work stress and risk of infection for doctors, we propose a visual perception and convolutional neural network (CNN)-based robotic autonomous LUS scanning localization system to realize scanned target recognition, probe pose solution and movement, and the acquisition of US images. The LUS scanned targets are identified through the target segmentation and localization algorithm based on the improved CNN, which is using the depth camera to collect the image information; furthermore, the method based on multiscale compensation normal vector is used to solve the attitude of the probe; finally, a position control strategy based on force feedback is designed to optimize the position and attitude of the probe, which can not only obtain high-quality US images but also ensure the safety of patients and the system. The results of human LUS scanning experiment verify the accuracy and feasibility of the system. The positioning accuracy of the scanned targets is 15.63 ± 0.18 mm, and the distance accuracy and rotation angle accuracy of the probe position calculation are 6.38 ± 0.25 mm and 8.60° ±2.29° , respectively. More importantly, the obtained high-quality US images can clearly capture the main pathological features of the lung. The system is expected to be applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助健忘的谷冬采纳,获得10
刚刚
123应助阔达的非笑采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助jm采纳,获得10
2秒前
Islay50ppm发布了新的文献求助10
2秒前
mm完成签到,获得积分10
3秒前
易安发布了新的文献求助10
3秒前
4秒前
4秒前
xueshufengbujue完成签到,获得积分10
4秒前
哭泣的丝发布了新的文献求助10
4秒前
5秒前
jian发布了新的文献求助10
5秒前
李爱国应助最专业采纳,获得10
5秒前
脑洞疼应助爱吃火鸡面采纳,获得10
6秒前
幽默迎蕾完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
西贝完成签到,获得积分10
7秒前
酱啊油完成签到,获得积分10
8秒前
闪闪的秋柔完成签到,获得积分10
8秒前
9秒前
9秒前
优雅逍遥发布了新的文献求助10
10秒前
10秒前
首席医官完成签到,获得积分10
10秒前
鲁西西发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助kk采纳,获得10
10秒前
Islay50ppm完成签到,获得积分10
12秒前
andrele应助易安采纳,获得10
12秒前
李爱国应助精明觅海采纳,获得10
13秒前
Wang发布了新的文献求助10
14秒前
14秒前
KV发布了新的文献求助10
14秒前
曾经的依风完成签到,获得积分10
15秒前
15秒前
桐桐应助健忘英姑采纳,获得10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271