Visual Perception and Convolutional Neural Network-Based Robotic Autonomous Lung Ultrasound Scanning Localization System

卷积神经网络 计算机视觉 计算机科学 超声波 人工智能 感知 人工神经网络 声学 物理 神经科学 心理学
作者
Boheng Zhang,Haibo Cong,Yi Shen,Mingjian Sun
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 961-974 被引量:4
标识
DOI:10.1109/tuffc.2023.3263514
摘要

Under the situation of severe COVID-19 epidemic, lung ultrasound (LUS) has been proved to be an effective and convenient method to diagnose and evaluate the extent of respiratory disease. However, the traditional clinical ultrasound (US) scanning requires doctors not only to be in close contact with patients but also to have rich experience. In order to alleviate the shortage of medical resources and reduce the work stress and risk of infection for doctors, we propose a visual perception and convolutional neural network (CNN)-based robotic autonomous LUS scanning localization system to realize scanned target recognition, probe pose solution and movement, and the acquisition of US images. The LUS scanned targets are identified through the target segmentation and localization algorithm based on the improved CNN, which is using the depth camera to collect the image information; furthermore, the method based on multiscale compensation normal vector is used to solve the attitude of the probe; finally, a position control strategy based on force feedback is designed to optimize the position and attitude of the probe, which can not only obtain high-quality US images but also ensure the safety of patients and the system. The results of human LUS scanning experiment verify the accuracy and feasibility of the system. The positioning accuracy of the scanned targets is 15.63 ± 0.18 mm, and the distance accuracy and rotation angle accuracy of the probe position calculation are 6.38 ± 0.25 mm and 8.60° ±2.29° , respectively. More importantly, the obtained high-quality US images can clearly capture the main pathological features of the lung. The system is expected to be applied in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山雀完成签到,获得积分10
1秒前
zhoull发布了新的文献求助10
2秒前
2秒前
3秒前
西门明雪完成签到,获得积分10
5秒前
张朝程完成签到,获得积分10
6秒前
7秒前
7秒前
毒你发布了新的文献求助10
7秒前
活力书包完成签到 ,获得积分10
10秒前
紫陌发布了新的文献求助10
12秒前
要减肥香水完成签到,获得积分10
12秒前
aaa完成签到,获得积分10
13秒前
小小酥被卷了完成签到,获得积分10
15秒前
15秒前
lxl98完成签到 ,获得积分10
17秒前
纯情的天奇完成签到 ,获得积分10
19秒前
知性的水杯完成签到 ,获得积分10
20秒前
科研通AI2S应助tdtk采纳,获得10
20秒前
orangelion完成签到,获得积分10
20秒前
QiaoHL完成签到 ,获得积分10
21秒前
21秒前
GBKYWY发布了新的文献求助10
22秒前
23秒前
nan完成签到,获得积分10
23秒前
23秒前
xiang完成签到,获得积分10
24秒前
开心的太清完成签到,获得积分10
25秒前
王侯将相发布了新的文献求助10
25秒前
tian发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
激动的梦松完成签到,获得积分10
26秒前
shineshine完成签到 ,获得积分10
26秒前
QYR完成签到,获得积分10
27秒前
SYLH应助Silone采纳,获得10
28秒前
29秒前
鲤鱼青雪完成签到,获得积分10
29秒前
西早完成签到 ,获得积分10
29秒前
wind完成签到 ,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470