李雅普诺夫指数
极限环
混乱的
数学
环面
分叉
特征向量
动力系统理论
维数(图论)
计算
控制理论(社会学)
李雅普诺夫函数
拓扑(电路)
分岔图
极限(数学)
统计物理学
数学分析
计算机科学
物理
纯数学
非线性系统
几何学
量子力学
算法
控制(管理)
人工智能
组合数学
作者
Sriram Parthasarathy,Hayder Natiq,Karthikeyan Rajagopal,Mahdi Nourian Zavareh,Fahimeh Nazarimehr
标识
DOI:10.1142/s0218127423500384
摘要
This paper introduces a new 3D conservative chaotic system. The oscillator preserves the energy over time, according to the Kaplan–Yorke dimension computation. It has a line of unstable equilibrium points that are investigated with the help of eigenvalues and also numerical analysis. The bifurcation diagrams and the corresponding Lyapunov exponents show various behaviors, for example, chaos, limit cycle, and torus with different parameters. Other dynamical properties, such as Poincaré section and basin of attraction, are investigated. Additionally, an oscillator’s electrical circuit is designed and implemented to demonstrate its potentiality.
科研通智能强力驱动
Strongly Powered by AbleSci AI