Prediction of high-level fear of cancer recurrence in breast cancer survivors: An integrative approach utilizing random forest algorithm and visual nomogram

列线图 乳腺癌 医学 随机森林 回归分析 认知 临床心理学 癌症 肿瘤科 机器学习 精神科 计算机科学 内科学
作者
Hui Ren,Tianye Yang,Xin Yin,Lingling Tong,Jianjun Shi,Jia Yang,Zhu Zhu,Hongyan Li
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:70: 102579-102579 被引量:2
标识
DOI:10.1016/j.ejon.2024.102579
摘要

Abstract

Purpose

This study is the first attempt to use a combination of regression analysis and random forest algorithm to predict the risk factors for high-level fear of cancer recurrence and develop a predictive nomogram to guide clinicians and nurses in identifying high-risk populations for high-level fear of cancer recurrence.

Methods

After receiving various recruitment strategies, a total of 781 survivors who had undergone breast cancer resection within 5 years in four Grade-A hospitals in China were included. Besides demographic and clinical characteristics, variables were also selected from the perspectives of somatic, cognitive, psychological, social and economic factors, all of which were measured using a scale with high reliability and validity. The study established univariate regression analysis and random forest model to screen for risk factors for high-level fear of cancer recurrence. Based on the results of the multi-variable regression model, a nomogram was constructed to visualize risk prediction.

Results

Fatigue, social constraints, maladaptive cognitive coping strategies, meta-cognition and age were identified as risk factors. Based on the predictive model, a nomogram was constructed, and the area under the curve was 0.949, indicating strong discrimination and calibration.

Conclusions

The integration of two models enhances the credibility of the prediction outcomes. The nomogram effectively transformed intricate regression equations into a visual representation, enhancing the readability and accessibility of the prediction model's results. It aids clinicians and nurses in swiftly and precisely identifying high-risk individuals for high-level fear of cancer recurrence, enabling the development of timely, predictable, and personalized intervention programs for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不爱池鱼应助gangqiang采纳,获得10
刚刚
刚刚
852应助lemon采纳,获得10
2秒前
香蕉觅云应助shadow采纳,获得10
2秒前
外向邑完成签到,获得积分10
2秒前
FashionBoy应助KYRIELIU采纳,获得10
2秒前
tong完成签到,获得积分10
3秒前
刘欣雨发布了新的文献求助10
3秒前
工藤新一完成签到,获得积分10
3秒前
语物完成签到,获得积分10
6秒前
隐形曼青应助隐形之柔采纳,获得10
6秒前
lhmily完成签到,获得积分20
7秒前
7秒前
7秒前
9秒前
9秒前
9秒前
科研毛毛虫完成签到,获得积分10
9秒前
血小板发布了新的文献求助20
10秒前
安琪发布了新的文献求助10
11秒前
11秒前
11秒前
Jiang发布了新的文献求助10
13秒前
脆脆鲨应助尺八采纳,获得10
13秒前
自信鞯发布了新的文献求助10
14秒前
光亮锦程完成签到,获得积分10
15秒前
Vito发布了新的文献求助10
15秒前
科研通AI5应助墨竹青浅采纳,获得10
16秒前
桐桐应助馨馨采纳,获得10
16秒前
yangg完成签到,获得积分10
16秒前
西西完成签到,获得积分10
17秒前
19秒前
20秒前
完美世界应助爱吃西瓜采纳,获得10
20秒前
李健应助过客采纳,获得10
21秒前
mmyhn应助Wink14551采纳,获得10
21秒前
畅快的麦片完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540918
求助须知:如何正确求助?哪些是违规求助? 3118164
关于积分的说明 9334037
捐赠科研通 2816035
什么是DOI,文献DOI怎么找? 1548049
邀请新用户注册赠送积分活动 721291
科研通“疑难数据库(出版商)”最低求助积分说明 712623