亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing Open-Access Database and Traditional Intensive Care Studies Using Machine Learning: Bibliometric Analysis Study (Preprint)

科学网 重症监护 数据库 重症监护室 计算机科学 梅德林 预印本 医学 情报检索 万维网 荟萃分析 重症监护医学 政治学 内科学 法学
作者
Yuhe Ke,Rui Yang,Nan Liu
标识
DOI:10.2196/preprints.48330
摘要

BACKGROUND Intensive care research has predominantly relied on conventional methods like randomized controlled trials. However, the increasing popularity of open-access, free databases in the past decade has opened new avenues for research, offering fresh insights. Leveraging machine learning (ML) techniques enables the analysis of trends in a vast number of studies. OBJECTIVE This study aims to conduct a comprehensive bibliometric analysis using ML to compare trends and research topics in traditional intensive care unit (ICU) studies and those done with open-access databases (OADs). METHODS We used ML for the analysis of publications in the Web of Science database in this study. Articles were categorized into “OAD” and “traditional intensive care” (TIC) studies. OAD studies were included in the Medical Information Mart for Intensive Care (MIMIC), eICU Collaborative Research Database (eICU-CRD), Amsterdam University Medical Centers Database (AmsterdamUMCdb), High Time Resolution ICU Dataset (HiRID), and Pediatric Intensive Care database. TIC studies included all other intensive care studies. Uniform manifold approximation and projection was used to visualize the corpus distribution. The BERTopic technique was used to generate 30 topic-unique identification numbers and to categorize topics into 22 topic families. RESULTS A total of 227,893 records were extracted. After exclusions, 145,426 articles were identified as TIC and 1301 articles as OAD studies. TIC studies experienced exponential growth over the last 2 decades, culminating in a peak of 16,378 articles in 2021, while OAD studies demonstrated a consistent upsurge since 2018. Sepsis, ventilation-related research, and pediatric intensive care were the most frequently discussed topics. TIC studies exhibited broader coverage than OAD studies, suggesting a more extensive research scope. CONCLUSIONS This study analyzed ICU research, providing valuable insights from a large number of publications. OAD studies complement TIC studies, focusing on predictive modeling, while TIC studies capture essential qualitative information. Integrating both approaches in a complementary manner is the future direction for ICU research. Additionally, natural language processing techniques offer a transformative alternative for literature review and bibliometric analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
打打应助ektyz采纳,获得10
36秒前
1分钟前
ektyz发布了新的文献求助10
1分钟前
积极的尔白完成签到 ,获得积分10
1分钟前
活力的以寒完成签到 ,获得积分10
2分钟前
2分钟前
己凡发布了新的文献求助10
2分钟前
陈军雄完成签到,获得积分20
2分钟前
快乐小狗发布了新的文献求助10
2分钟前
Research完成签到 ,获得积分10
3分钟前
3分钟前
己凡发布了新的文献求助10
3分钟前
energyharvester完成签到 ,获得积分10
3分钟前
123完成签到,获得积分10
3分钟前
123发布了新的文献求助10
3分钟前
己凡发布了新的文献求助50
3分钟前
xiong发布了新的文献求助60
3分钟前
零一完成签到 ,获得积分10
4分钟前
yiyiyiyiyi//完成签到,获得积分10
4分钟前
4分钟前
己凡发布了新的文献求助10
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
5分钟前
ding应助Mingda采纳,获得10
5分钟前
TTTHANKS完成签到 ,获得积分10
5分钟前
nav完成签到 ,获得积分10
5分钟前
cy0824完成签到 ,获得积分10
6分钟前
fengfenghao完成签到 ,获得积分10
6分钟前
miurny完成签到,获得积分10
6分钟前
田様应助YYYCCCCC采纳,获得30
8分钟前
Perion完成签到 ,获得积分10
8分钟前
8分钟前
小胡爱科研完成签到 ,获得积分10
8分钟前
研友_nEWRJ8发布了新的文献求助10
8分钟前
鉴定为学计算学的完成签到,获得积分10
9分钟前
Artin发布了新的文献求助10
9分钟前
hdc12138完成签到 ,获得积分10
10分钟前
科目三应助科研通管家采纳,获得10
10分钟前
骆十八完成签到,获得积分10
11分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268717
求助须知:如何正确求助?哪些是违规求助? 2908158
关于积分的说明 8344665
捐赠科研通 2578555
什么是DOI,文献DOI怎么找? 1402143
科研通“疑难数据库(出版商)”最低求助积分说明 655288
邀请新用户注册赠送积分活动 634476